Shahid Chamran ¹ University of Ahvaz

THE FIRST INTERNATIONAL CONFERENCE ON MATHEMATICS AND ITS APPLICATIONS

Chamran 11-12 Auguest 2021, Shahid Chamran University of Ahvaz, Ahvaz, Iran ty of Ahvaz

Hyers-Ulam stabilities for harmonically s-convex function

Zohreh Kefayati*

Department of Science, Faculty of Qazvin Branch, Technical and Vocational University (TVU), Qazvin,

Iran

and Vahid Keshavarz

Department of Science, Faculty of Qazvin Branch, Technical and Vocational University (TVU), Qazvin,

 Iran

Abstract. In this paper we generalize the concept of harmonically convex to harmonically *s*-convex that *s* is a real number in $(\circ, 1]$ and attention to Sandwich theorem. Also, we investigate stability of Hyers-Ulam for them.

Keywords: Harmonically convex functions, Sandwich theorem, Hyers-Ulam stability. **Mathematics Subject Classification [2020]:** 26A51, 52A41, 39B72.

1 Introduction and Preliminaries

The notion of stability was expressed by Ulam in 1940 like this "what condition does there exist a homomorphism near an approximate homomorphism?". In 1941, Hyers answered to Ulam's problem on Banach spaces, in which case it's notion was called stability of Hyers-Ulam. Yet this notion was browsed on operators and various spaces that first time it was expressed by Hyers-Ulam on convex function in 1952. Then the notion of ε -convex function and its stability was introduced and proved.

Convexity of functions and sets have important role in mathematical economics, engineering, management science, and optimization theory, (see [1, 3, 5]) thereby introducing new notions such as being quasi-convex, pseudo-convex, strongly convex, approximately convex, midconvex, h-convex, etc (see[4]). The classical sense of convex function has been extended and generalized in different directions. In this paper, we use a recent notion of generalized convexity, introduced by Isean [5] for s-convex function.

Definition 1.1. [5] Let I be an interval in $\mathbb{R}\setminus\{\circ\}$. A function $f: I \to \mathbb{R}$ is said to be harmonically convex on I if the inequality

$$f(\frac{xy}{tx + (1-t)y}) \le tf(y) + (1-t)f(x), \tag{1.1}$$

holds, for all $x, y \in I$ and $t \in [0, 1]$.

Definition 1.2. [2] Let s be a real number, $s \in (0, 1]$. A function $f : [0, \infty) \to [0, \infty)$ is said to be s-convex if

$$f(tx + (1-t)y) \le t^s f(x) + (1-t)^s f(y),$$

for all $x, y \in [\circ, \infty)$ and $t \in [\circ, 1]$.

Motivated by the works mentioned above, we have the following definition.

Definition 1.3. Let $f : I \to \mathbb{R}$ and s be a real number in $(\circ, 1]$. We said that f is harmonically s-convex on I if the inequality

$$f(\frac{xy}{tx+(1-t)y}) \le t^s f(y) + (1-t)^s f(x), \tag{1.2}$$

holds for all $x, y \in I$.

2 Main results

In this paper we have two main results. The first one is a sandwich theorem for harmonically s-convex functions and the second is about to we prove a stability result of Hyers-Ulam type for harmonically s-convex functions.

Proposition 2.1. Let $I \subseteq \mathbb{R} \setminus \{\circ\}$ be a real interval and $f: I \to \mathbb{R}$ a function. then:

- If $I \subseteq (\circ, +\infty)$ and f is s-convex and nondecreasing, then f is harmonically s-convex.
- If $I \subseteq (\circ, +\infty)$ and f is harmonically s-convex and nonincreasing, then f is s-convex.
- If $I \subseteq (-\infty, \circ)$ and f is harmonically s-convex and nondecreasing, then f is s-convex.
- If $I \subseteq (-\infty, \circ)$ and f is s-convex and nonincreasing, then f is harmonically s-convex.

Now, by using the proposition (2.1), we can obtain the sandwich theorem for harmonically s-convex functions.

Theorem 2.2. Let $f, g: I \to \mathbb{R}$ defined on a real interval I and $s \in (0, 1]$. Then

$$f(tx + (1 - t)y) \le t^s g(x) + (1 - t)^s g(y)$$

for all $x, y \in I$ and $t \in [0, 1]$ if and only if there exists a s-convex function $k : I \to \mathbb{R}$ such that

$$f \leq k \leq g.$$

Remark 2.3. Theorem (2.2) generalized theorem 2 [3] to harmonically s-convex functions.

2

Hyers-Ulam stabilities for harmonically s-convex function 3

Theorem 2.4. Let f, g be real functions defined on the interval $(\circ, +\infty)$ and $s \in (\circ, 1]$. the following conditions are equivalent:

- There exists a harmonically s-convex function $k : (\circ, +\infty) \to \mathbb{R}$ such that $f(x) \le k(x) \le g(x)$, for all $x \in (\circ, +\infty)$.
- The following inequalitie holds:

$$f(\frac{xy}{tx + (1-t)y}) \le t^s g(y) + (1-t)^s g(x),$$

for all $x, y \in (\circ, +\infty), t \in [\circ, 1]$.

As an immediate consequence of above theorem, we obtain the following stability result of Hyers-Ulam type for harmonically s-convex functions.

Theorem 2.5. Let $[a, b] \subseteq (\circ, +\infty)$ be an interval, $\varepsilon > \circ$ and $s \in (\circ, 1]$. A function $f : [a, b] \to \mathbb{R}$ satisfies the inequality

$$|f(\frac{xy}{tx+(1-t)y}) - t^s f(y) - (1-t)^s f(x)| \le \varepsilon,$$

for all $x, y \in [a, b]$ and $t \in [0, 1]$, if and only if there exists a harmonically s-convex function $\varphi : [a, b] \to \mathbb{R}$ such that

$$|f(x) - \varphi(x)| < \frac{\varepsilon}{2}, \quad \forall x \in [a, b].$$

References

- A. Barani, A. Ghazanfari and S. Dragomir, *Hermite-Hadamard inequality for func*tions whose derivatives absolute values are preinvex, Journal of Inequalities and Applications, 247 (2012), 247–256.
- [2] K. Baron, J. Matkowski and K. Nikodem, A sandwich with convexity. Math. Pannica, 1 (1994), 139–144.
- M. Bessenyei and Zs. Páles, Characterization of convexity via Hadamard's inequality, Math. Inequal. Appl., 9 (2006), 53–62.
- [4] A. Daniilidis and P. Georgiev, Approximately convex functions and approximately monotonic operators, Nonlin. Anal., 66 (2007), 547–567.
- [5] I. Iscan, Hermite-Hadamard type inequalities for harmonically convex functions, Hacettepe Journal of Mathematics and Statistics, 6 (2014), 935–942.

E-mail: v.keshavarz68@yahoo.com E-mail: zohrekefayati68@gmail.com