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Abstract. In this paper we generalize the concept of harmonically convex to harmonically
s-convex that s is a real number in (◦, 1] and attention to Sandwich theorem. Also, we
investigate stability of Hyers-Ulam for them.
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1 Introduction and Preliminaries
The notion of stability was expressed by Ulam in 1940 like this ”what condition does there
exist a homomorphism near an approximate homomorphism?”. In 1941, Hyers answered
to Ulam’s problem on Banach spaces, in which case it’s notion was called stability of
Hyers-Ulam. Yet this notoin was browsed on operators and various spaces that 昀椀rst time
it was expressed by Hyers-Ulam on convex function in 1952. Then the notion of ε-convex
function and its stability was introduced and proved.
Convexity of functions and sets have important role in mathematical economics, engi-
neering, management science, and optimization theory, (see [1, 3, 5]) thereby introducing
new notions such as being quasi-convex, pseudo-convex, strongly convex, approximately
convex, midconvex, h-convex, etc (see[4]). The classical sense of convex function has been
extended and generalized in di昀昀erent directions. In this paper, we use a recent notion of
generalized convexity, introduced by Isean [5] for s-convex function.
De昀椀nition 1.1. [5] Let I be an interval in R\{◦}. A function f : I → R is said to be
harmonically convex on I if the inequality

f(
xy

tx+ (1− t)y
) ≤ tf(y) + (1− t)f(x), (1.1)
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holds, for all x, y ∈ I and t ∈ [◦, 1].

De昀椀nition 1.2. [2] Let s be a real number, s ∈ (◦, 1]. A function f : [◦,∞) → [◦,∞) is
said to be s-convex if

f(tx+ (1− t)y) ≤ tsf(x) + (1− t)sf(y),

for all x, y ∈ [◦,∞) and t ∈ [◦, 1].

Motivated by the works mentioned above, we have the following de昀椀nition.

De昀椀nition 1.3. Let f : I → R and s be a real number in (◦, 1]. We said that f is
harmonically s-convex on I if the inequality

f(
xy

tx+ (1− t)y
) ≤ tsf(y) + (1− t)sf(x), (1.2)

holds for all x, y ∈ I.

2 Main results

In this paper we have two main results. The 昀椀rst one is a sandwich theorem for har-
monically s-convex functions and the second is about to we prove a stability result of
Hyers-Ulam type for harmonically s-convex functions.
Proposition 2.1. Let I ⊆ R\{◦} be a real interval and f : I → R a function. then:

• If I ⊆ (◦,+∞) and f is s-convex and nondecreasing, then f is harmonically s-convex.

• If I ⊆ (◦,+∞) and f is harmonically s-convex and nonincreasing, then f is s-convex.

• If I ⊆ (−∞, ◦) and f is harmonicaly s-convex and nondecreasing, then f is s-convex.

• If I ⊆ (−∞, ◦) and f is s-convex and nonincreasing, then f is harmonically s-convex.

Now, by using the proposition (2.1), we can obtain the sandwich theorem for harmon-
ically s-convex functions.

Theorem 2.2. Let f, g : I → R de昀椀ned on a real interval I and s ∈ (◦, 1]. Then

f(tx+ (1− t)y) ≤ tsg(x) + (1− t)sg(y)

for all x, y ∈ I and t ∈ [◦, 1] if and only if there exists a s-convex function k : I → R such
that

f ≤ k ≤ g.

Remark 2.3. Theorem (2.2) generalized theorem 2 [3] to harmonically s-convex functions.
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Theorem 2.4. Let f, g be real functions de昀椀ned on the interval (◦,+∞) and s ∈ (◦, 1].
the following conditions are equivalent:

• There exists a harmonically s-convex function k : (◦,+∞) → R such that f(x) ≤

k(x) ≤ g(x), for all x ∈ (◦,+∞).

• The following inequalitie holds:

f(
xy

tx+ (1− t)y
) ≤ tsg(y) + (1− t)sg(x),

for all x, y ∈ (◦,+∞), t ∈ [◦, 1].

As an immediate consequence of above theorem, we obtain the following stability result
of Hyers-Ulam type for harmonically s-convex functions.

Theorem 2.5. Let [a, b] ⊆ (◦,+∞) be an interval, ε > ◦ and s ∈ (◦, 1]. A function
f : [a, b] → R satis昀椀es the inequality

|f(
xy

tx+ (1− t)y
)− tsf(y)− (1− t)sf(x)| ≤ ε,

for all x, y ∈ [a, b] and t ∈ [◦, 1], if and only if there exists a harmonically s-convex function
ϕ : [a, b] → R such that

|f(x)− ϕ(x)| <
ε

2
, ∀x ∈ [a, b].
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