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Abstract. In this paper, firstly, we introduce αµ-admissible Zµ-contraction and

αµ-admissibleNµ-contraction via stimulation functions. Secondly, we prove some

new fixed point theorems for defined class of contractions via α-admissible stim-

ulation mappings. Our results extend some existing results. Moreover, some

examples and an application to functional integral equations are given to support

the obtained results.
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1. Introduction and Preliminaries

Schauder fixed point theorem is one of the useful and important tools in analysis.

In 1955, Darbo [2], by using the concept of a measure of non-compactness, proved the

fixed point property for known contraction on a closed, bounded and convex subset

of Banach spaces. Darbo’s fixed point plays a key role in nonlinear analysis especially

in proving the existence of solutions for a lot of classes of nonlinear equations. Since

then, some generalizations of Darbo’s fixed point theorem have been proved. For

example, we refer the reader to [3–8] and the references therein. Recently, Jianhua

Chen et al. [1] proved some new generalizations of Darbo’s fixed point theorem by

using the notion of simulation function that Khojasteh et al. [13] proposed it.

In this paper, we investigate the existence of fixed points of certain mappings via

αµ-admissible simulation functions for α-set contraction on a closed, bounded and

convex subset of Banach spaces.

Throughout this paper, by N, R+ and R, respectively, denote the set of all positive

integers, non-negative real numbers and real numbers. Now, let us recall some basic

concepts, notations and known results which will be used in the sequel. We let E be
1
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a Banach space with the norm ∥.∥ and ϑ be the zero element in E. The closed ball

centered at x with radius r is denoted by B(x, r), by simply Br if x = 0. If X is a

nonempty subset of E, then we denote byX and c̄o(X) the closure and closed convex

hull of X, respectively. Moreover, let ME be the family of all nonempty bounded

subsets of E and by NE the subfamily consisting of all relatively compact subsets of

E. In [11], Bana’s et al. gave the concepts of a measure of non-compactness.

Definition 1.1. A mapping µ : ME → R+ is said to be a measure of non-compactness

in E if it satisfies the following conditions:

(1) The family kerµ = {X ∈ ME : µ(X) = 0} is nonempty and kerµ ⊆ NE ;

(2) X ⊆ Y ⇒ µ(X) ≤ µ(Y );

(3) µ(c̄oX) = µ(X̄) = µ(X);

(4) µ(λX + (1− λ)Y ) ≤ λµ(X) + (1− λ)µ(Y ) for all λ ∈ [0, 1].

(5) If {Xn} is a sequence of closed sets from ME such that Xn+1 ⊆ Xn for

n = 1, 2, ... and limn→∞ µ(Xn) = 0, then the intersection set X∞ = ∩∞
n=1Xn

is nonempty.

The family ker µ described in (1) in Definition 1.1 is said to be the kernel of the

measure of non-compactness µ. Observe that the intersection set X∞ from (4) is a

member of the family ker µ. In fact, since µ(X∞) ≤ µ(Xn) for any n, we infer that

µ(X∞) = 0. This yields that X∞ ∈ kerµ.

Theorem 1.1. (Schauder fixed point principle) Let Ω be a nonempty, bounded,

closed and convex subset of a Banach space E. Then each continuous and compact

map T : Ω → Ω has at least one fixed point in the set Ω.

Obviously the above formulated theorem constitutes the well known Schauder

fixed point principle. It’s generalization, called the Darbo’s fixed point theorem, is

formulated below.

Theorem 1.2. ( [1, Darbo’s fixed point theorem]) Let Ω be a nonempty, bounded,

closed and convex subset of a Banach space E and let T : Ω → Ω be a continuous

mapping. Assume that there exists a constant k ∈ [0, 1) such that

µ(TX) ≤ kµ(X).

for any nonempty subset X of Ω, where µ is a measure of non-compactness defined

in E. Then T has a fixed point in the set Ω.



3

In order to prove our fixed point theorems, we need some the following related

concepts. First of all, we recall the definition of the class of function as follows.

Definition 1.2. ( [12, Khan et al.]) An altering distance function is a continuous,

non-decreasing mapping φ : [0,∞) → [0,∞) such that φ−1({0}) = {0}.

However, in [13], the authors slightly modified the definition of simulation function

which introduced by Khojasteh et al. [14] and enlarged the family of all simulation

functions.

Definition 1.3. ( [13]) A function σ : [0,∞)× [0,∞) → R is said to be simulation

if it fulfils:

(σ1) σ(0, 0) = 0;

(σ2) σ(t, u) < u− t for all t, u > 0;

(σ3) if {tn}, {un} are sequences in (0,∞) such that limn→∞ tn = limn→∞ un > 0,

then

lim sup
n→∞

σ(tn, un) < 0. (1)

Let Z be the collection of all simulation functions σ : [0,∞) × [0,∞) → R. On

account of the property (σ2), we conclude that

σ(t, t) < 0 for all t > 0. (2)

Thereupon, the authors [14] give the following example to illustrate that every sim-

ulation function in the original Khojasteh et al.’s sense (Definition 1.2) is also a

simulation function in Roldn-Lpez- de-Hierro et al.s sense (Definition 1.3), but the

converse is not true.

Example 1.1. Let σ : [0,∞)× [0,∞) → R be a mapping such that σ(t, u) = u
2
− t

for all t, u ∈ [0,∞). It is obvious that σ is a simulation function. For more examples

of simulation functions in [13,21].

Definition 1.4. ( [1]) A function ζ : [0,∞)× [0,∞) → R is said to be generalized

simulation if:

ζ(t, s) ≤ s− t for all t, s > 0;

Let N be the family of all generalized simulation functions ζ : [0,∞)×[0,∞) → R.

Definition 1.5. Let f : X → X and α : X ×X → (−∞,+∞). We say that f is

an α-admissible mapping if α(x, y) ≥ 1 implies α(fx, fy) ≥ 1, for all x, y ∈ X,
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In what follows we recall the notion of (triangular) α-orbital admissible, intro-

duced by Popescu [20], that is inspired from [19].

Definition 1.6. ( [20]) For a fixed mapping α : M ×M → [0,∞), we say that a

self-mapping T : M → M is an α-orbital admissible if

(O1) α(u, Tu) ≥ 1 ⇒ α(Tu, T 2u) ≥ 1.

Let A be the collection of all α-orbital admissible T : M → M .

In addition, T is called triangular α-orbital admissible if T is α-orbital admissible

and

(O2) α(u, v) ≥ 1 and α(v, Tv) ≥ 1 ⇒ α(u, Tv) ≥ 1

Let O be the collection of all triangular α-orbital admissible T : M → M.

Definition 1.7. ( [1]) Let Ω be a nonempty, bounded, closed and convex subset of

a Banach space E and let T : Ω → Ω be a continuous operator. We say that T is a

Zµ-contraction if there exists ξ ∈ Z such that

ξ(µT (X)), µ(X) ≥ 0. (3)

for any nonempty subset X of Ω, where µ is an arbitrary measure of non-compactness.

Now, we observe some useful properties of Zµ-contractions in Banach spaces.

Remark 1.1. ( [1]) If T is a Zµ-contraction with respect to ξ ∈ Z, then

µ(T (X)) < µ(X) (4)

for any nonempty subset X of Ω. To prove it, applying (ξ(2)) and (3), we have

0 ≤ ξ(µ(T (X)), µ(X)) < µ(X)− µ(T (X)).

Hence, (4) holds. Next, we prove the following fixed point theorem.

Theorem 1.3. ( [1]) Let Ω be a nonempty, bounded, closed and convex subset of a

Banach space E and let T : Ω → Ω be a continuous operator. If T is a Zµ-contraction

with respect to ξ ∈ Z. Then T has at least one fixed point in Ω .

Definition 1.8. ( [1]) Let Ω be a nonempty, bounded, closed and convex subset of

a Banach space E and let T : Ω → Ω be a continuous operator. We say that T is a
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Nµ-contraction if there exists ζ ∈ N such that

ξ(µT (X)), κµ(X)) ≥ 0. (5)

for any nonempty subsetX of Ω, where µ is an arbitrary measure of non-compactness,

and κ : [0,∞) → R+ is nondecreasing on R+ and such that limn→∞ κn(t) = 0 for

each t > 0.

Now, we get some useful properties of Nµ-contractions in Banach spaces.

Remark 1.2. (1) By the definition of generalized stimulation functions, it is clear

that a generalized stimulation function must verify ζ(r, r) ≤ 0 for all r > 0.

(2) If T is Nµ-contraction with respect to ζ ∈ N , then

µ(T (X)) ≤ κ(µ(X)) (6)

for any nonempty subset X of Ω. To prove it, applying Definition 1.8, we have

0 ≤ ξ(µ(TX), κ(µ(X))) ≤ κ(µ(X))− µ(TX).

Hence, (6) holds.

2. Main result and Fixed point theorems via α-admissible

stimulation functions

In order to prove our fixed point theorems, we need some the following related

concepts. First of all, we recall the definition of the class of function as follows.

Definition 2.1. Let Ω be a nonempty, bounded, closed and convex subset of a Ba-

nach space E and let T : Ω → Ω be a continuous operator, and α : µ(ME)×µ(ME) →
(−∞,+∞). We say that T is an αµ-admissible mapping if

α(µ(X), µ(Y )) ≥ 1 ⇒ α(µ(TX), µ(TY )) ≥ 1,

for any nonempty subsets X and Y of Ω, where µ is an arbitrary measure of non-

compactness.

Definition 2.2. Let Ω be a nonempty, bounded, closed and convex subset of a Ba-

nach space E and let T : Ω → Ω be a continuous and αµ-admissible operator. We

say that T is an αµ-admissible Zµ-contraction if there exists ξ ∈ Z such that

ξ(α(µ(X), µ(TX))µT (X)), µ(X)) ≥ 0. (7)
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Remark 2.1. If α(x, y) = 1, then T turns into a Zµ-contraction with respect to ξ.

Remark 2.2. If T is an αµ-admissible Zµ-contraction with respect to ξ, then

α(µ(X), µ(TX))µ(TX) < µ(X) for all X ⊆ Ω such that µ(X) > 0. (8)

To prove the assertion, we assume that X ⊆ Ω. If µ(TX) = 0, then

α(µ(X), µ(TX))µ(TX) = 0 < µ(X).

Otherwise, µ(TX) > 0. If α(µ(X), µ(TX)) = 0, then the inequality is satisfied

trivially. So assume that α(µ(X), µ(TX)) > 0 and applying ξ(2) with (7), we derive

that

0 ≤ ξ(α(µ(X), µ(TX))µ(TX), µ(X)) < µ(X))− α(µ(X), µ(TX))µ(TX).

so (8) holds.

Theorem 2.1. Let Ω be a nonempty, bounded, closed and convex subset of a Banach

space E and let T : Ω → Ω be a continuous operator. If T is an αµ-admissible Zµ-

contraction with respect to ξ ∈ Z, and there exits X0 ⊆ Ω such that X0 be a closed

and convex, TX0 ⊆ X0 and α(µ(X0), µ(TX0)) ≥ 1 then T has at least one fixed

point in Ω .

Proof. Let X0 ⊆ Ω be such that α(µ(X0), µ(TX0)) ≥ 1, and TX0 ⊆ X0, and define

a sequence {Xn} as follows:

Xn = c̄o(TXn−1), for all n ≥ 1.

So by induction we get

Xn ⊆ Xn−1 and TXn ⊆ Xn.

since by hypothesis we have

TX0 ⊆ X0,

so we have

X1 = c̄o(TX0) ⊆ c̄o(X0) = X0.

Now suppose that Xn+1 ⊆ Xn, therefore we get

Xn+2 = c̄o(TXn+1) ⊆ c̄o(TXn) = Xn+1,

and

TXn+1 ⊆ TXn ⊆ c̄o(TXn) = Xn+1.
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If there exists natural number n0 such that µ(Xn0) = 0, then Xn0 is compact and

since TXn0 ⊂ Xn0 . Thus Theorem 1.1 implies that T has a fixed point. Next, we

suppose that µ(Xn) > 0 for all n ≥ 0.

Regarding that T is αµ-admissible, we derive

α(µ(X0), µ(X1)) = α(µ(X0), µ(c̄o(TX0))) = α(µ(X0), µ(TX0)) ≥ 1

⇒ α(µ(TX0), µ(TX1)) = α(µ(X1), µ(X2)) ≥ 1.

Recursively, we obtain that

α(µ(Xn), µ(Xn+1)) ≥ 1, for all n ≥ 0. (9)

On the other hand by our assumptions and (3), we get

ξ(α(µ(Xn), µ(Xn+1))µ(Xn+1), µ(Xn)) = ξ(α(µ(Xn), µ(c̄o(TXn))µ(c̄o(TXn)), µ(Xn))

= ξ(α(µ(Xn), µ(TXn))µ(TXn), µ(Xn)) ≥ 0.

(10)

Based on Remark 2.2, we can get

ξ(α(µ(Xn), µ(Xn+1))µ(Xn+1), µ(Xn)) < µ(Xn)− α(µ(Xn), µ(Xn+1))µ(Xn+1). (11)

From (9), (10) and (11), we infer that

µ(Xn+1) ≤ α(µ(Xn), µ(Xn+1))µ(Xn+1) < µ(Xn). (12)

Hence, {µ(Xn)} is a decreasing sequence of positive real numbers. Thus, there exists

r ≥ 0, such that µ(Xn) → r as n → ∞. Next, we show that r = 0. Suppose, to the

contrary, that r > 0. Also by (12) we have

α(µ(Xn), µ(Xn+1))µ(Xn+1) → r > 0 as n → ∞.

Applying the axiom σ(3) in Definition 1.3 to the sequences:

{tn = α(µ(Xn), µ(Xn+1))µ(Xn+1)} and {sn = µ(Xn)}

(which have the same limit r > 0 and verify tn < sn for all n), it follow that

lim sup
n→∞

ξ(α(µ(Xn), µ(Xn+1))µ(Xn+1), µ(Xn)) = lim sup
n→∞

ξ(tn, sn) < 0.

which contradicts (10). We get r = 0, and hence µ(Xn) → 0 as n → ∞. Now

since {Xn} is a nested sequence, in view of (5) of Definition 1.1, we conclude that
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X∞ = ∩∞
n=1Xn is a nonempty, closed and convex subset of Ω. Moreover, we know

that X∞ belongs to ker µ. So Xn is compact and invariant under the mapping T .

Consequently, Theorem 1.1 implies that T has a fixed point in X∞ . Since X∞ ⊆ Ω,

then the proof is completed. �

Corollary 2.1. (Theorem 2.1 in [1]) Let Ω be a nonempty, bounded, closed and

convex subset of a Banach space E and let T : Ω → Ω be a continuous operator. If

T is a Zµ-contraction with respect to ξ ∈ Z, then T has at least one fixed point in

Ω .

Proof. In Theorem ?? let α(x, y) = 1. �

3. Fixed point theorems via α-admissible generalized stimulation

functions

Definition 3.1. Let Ω be a nonempty, bounded, closed and convex subset of a Ba-

nach space E and let T : Ω → Ω be a continuous and αµ-admissible operator. We

say that T is an αµ-admissible Nµ-contraction if there exists ξ ∈ N such that

ξ(α(µ(X), µ(TX))µT (X)), κµ(X)) ≥ 0. (13)

for any nonempty subset X of Ω, where µ is an arbitrary measure of non-compactness

and κ : [0,∞) → R+ is nondecreasing on R+ and such that limn→∞ κn(t) = 0, for

each t > 0.

Remark 3.1. If α(x, y) = 1, then T turns into a Nµ-contraction with respect to ξ.

Remark 3.2. If T is an αµ-admissible Nµ-contraction with respect to ξ, then

α(µ(X), µ(TX))µ(TX) ≤ κ(µ(X)) for all X ⊆ Ω such that µ(X) > 0. (14)

To prove the assertion, we assume that X ⊆ Ω. If µ(TX) = 0, then

α(µ(X), µ(TX))µ(TX) = 0 ≤ κ(µ(X)).

Otherwise, µ(TX) > 0. If α(µ(X), µ(TX)) = 0, then the inequality is satisfied

trivially. So assume that α(µ(X), µ(TX)) > 0 and applying (13), we derive that

0 ≤ ξ(α(µ(X), µ(TX))µ(TX), κ(µ(X))) ≤ κ(µ(X))− α(µ(X), µ(TX))µ(TX).

so (14) holds.
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Next, we prove the following fixed point theorem.

Theorem 3.1. Let Ω be a nonempty, bounded, closed and convex subset of a Banach

space E and let T : Ω → Ω be a continuous operator. If T is an αµ-admissible Nµ-

contraction with respect to ξ ∈ Z, and there exits X0 ⊆ Ω such that X0 be a closed

and convex, TX0 ⊆ X0 and α(µ(X0), µ(TX0)) ≥ 1 then T has at least one fixed

point in Ω .

Proof. Let X0 ⊆ Ω be such that α(µ(X0), µ(TX0)) ≥ 1, and TX0 ⊆ X0, and define

a sequence {Xn} as follows:

Xn = c̄o(TXn−1), for all n ≥ 1.

If there exists natural number n0 such that µ(Xn0) = 0, then Xn0 is compact and

since TXn0 ⊂ Xn0 . Thus Theorem 1.1 implies that T has a fixed point. Next, we

suppose that µ(Xn) > 0 for all n ≥ 0.

Regarding that T is αµ-admissible, we derive

α(µ(X0), µ(X1)) = α(µ(X0), µ(c̄o(TX0))) = α(µ(X0), µ(TX0)) ≥ 1

⇒ α(µ(TX0), µ(TX1)) = α(µ(X1), µ(X2)) ≥ 1.

Recursively, we obtain that

α(µ(Xn), µ(Xn+1)) ≥ 1, for all n = 0, 1, . . . (15)

On the other hand by our assumptions and (5), we get

ξ(α(µ(Xn), µ(Xn+1))µ(Xn+1), κ(µ(Xn))) = ξ(α(µ(Xn), µ(c̄o(TXn))µ(c̄o(TXn)), κ(µ(Xn)))

= ξ(α(µ(Xn), µ(TXn))µ(TXn), κ(µ(Xn))) ≥ 0.

(16)

Based on Remark 3.2, we can get

ξ(α(µ(Xn), µ(Xn+1))µ(Xn+1), κ(µ(Xn))) < κ(µ(Xn))− α(µ(Xn), µ(Xn+1))µ(Xn+1).

(17)

From (15), (16) and (17), we infer that

µ(Xn+1) ≤ α(µ(Xn), µ(Xn+1))µ(Xn+1) < κ(µ(Xn)) for all n ∈ N. (18)

Since κ : [0,∞) → R+ is nondecreasing, we can get

µ(Xn+1) ≤ κ(µ(Xn)) ≤ κ(κ(µ(Xn−1))) ≤ · · · ≤ κn(µ(X0)) (19)
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In (19), Letting n → ∞, we have

lim
n→∞

µ(Xn+1) = 0.

Now since {Xn} is a nested sequence, in view of (5) of Definition 1.1, we conclude

that X∞ = ∩∞
n=1Xn is a nonempty, closed and convex subset of Ω. Moreover, we

know that X∞ belongs to ker µ. So Xn is compact and invariant under the mapping

T . Consequently, Theorem 1.1 implies that T has a fixed point in X∞ . Since

X∞ ⊆ Ω, then the proof is completed.

�

Corollary 3.1. (Theorem 3.1 in [1]) Let Ω be a nonempty, bounded, closed and

convex subset of a Banach space E and let T : Ω → Ω be a continuous operator. If

T is a Nµ-contraction with respect to ξ ∈ Z, then T has at least one fixed point in

Ω .

Proof. In Theorem ?? let α(x, y) = 1. �
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