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Abstract— Surgical robotic revolution has not just assisted 

surgeons to perform sophisticated surgeries, but also increased 

accuracy, reduced risk, operative and recovery time. Parallel 

mechanisms are widely used for designing of surgical robots due 

to their advantage of low inertia and high precision. Specific 

surgical procedures confine and restrict their workspace, while 

controlling and validating the robots are complicated based on 

their complex dynamic. To this end, in this paper, a 6-DOF 

robot, with linear manipulators, is designed and controlled. 

Addressing the inherent nonlinearity of the system, an adaptive 

PID controller is employed and validated with nonlinear model. 

The main objective of the paper is implementing the controller 

using MATLAB on the nonlinear model designed in Adams 

software as online. Furthermore, as feasibility study, a 3-axis 

gyro sensor is calibrated and used to produce complex real 

movements and desires, which is sending real time signals to 

MATLAB with microcontroller ATmega 2560. Simulation 

result shows that the adaptive controller identifies the system’s 

dynamic and proceed in error reduction path. In addition, the 

method defines the workspace of both the states and forces 

which can be an introduction to comprehensive design of such 

robots. 
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nonlinear parameter 

I. INTRODUCTION 

By utilizing the surgical robots, enormous achievements 
are accomplished such as more accurate surgeries, shorter 
surgery time and recovery time of patients. From kinematic 
structure point of view, surgical robots are sorted in three 
categories named serial, parallel and hybrid architecture [1]. 
Regarding to wide usage range of Serial robots, it is most 
common in medical field except the applications which need 
more accuracy because Serial robots are not reliable in this 
field. To overcome this issue, the design turns into parallel 
which is more precious [2]. The first robot that was used for 
human brain biopsy was PUMA 560 in 1985 and after that a 
robot named ROBODOC™ 5 axis SCARA robot including 2 
revolute joint axes was used in 1998 which was accepted by 
Food and Drug Administration (FDA) for total hip 
replacement [3],[4]. In [5], the advanced surgical serial 
design is illustrated with notice to required workspace with 
constrained outlined. Another robot which succeeded to be 
certified by FDA in 2000 for general laparoscopic surgeries 
[6] is Da Vinci that has a reputation for most popular serial 
robot. A thriving Israeli team of researchers introduced the 
MiniAture Robot for Surgical (MARS) procedures [7] with 
six degree of freedom (DOF) parallel manipulator, 10 cm3 
work volume and 557 cm3 size in 2003. One of the most 
remarkable features of MARS is its light weight (200g) that 
makes registration process much easier. The robot has 
application to pedicle screw in spinal fusion and distal 
locking in intramedullary nailing [8], [9]. MARS improved 

to Spine Assist and then to Renaissance that are released by 
Mazor Robotics (Cesarea, Israel). Kobler et al. invented a 
parallel kinematic robot based on Stewart-Gough platform 
for skull surgery that could be mounted on head. It benefits 
from spherical heads which are installed on patient skull [10]. 
The moving platform helps robot for better intervention 
between the bone anchors e.g. drilling access to cochlea, 
insertion of needle etc. [10], which specifies the need of 
control for the robot. Many tasks performed by robot 
manipulators require the interaction between the end effector 
and its environment, such as pushing, scraping, deburring, 
grinding, pounding, polishing, twisting, cutting, excavating. 
In some of the mentioned applications, robot position control 
is necessary and in some others, force control is desired. 
There are several methods to force control of robots, 
including stiffness control, impedance control, admittance 
control, hybrid control, explicit force control and implicit 
force control [11], [12], [13], [14]. Thus, this paper aims to 
not only design a controller for the complicated mechanism, 
but also, validate the controller on a nonlinear system through 
Adams software which less has been studied recently. Paper 
is organized as follow: Dynamic equation of Stewart robot is 
presented in II while controller design is laid in section III. 
Simulation Setup, results, and conclusion are presented in 
section IV, V and VI respectively. 

II. DYNAMIC EQUATION OF STEWART PLATFORM 

In this section, dynamic equations of Stewart mechanism are 

derived using Newton-Euler method. The derivations are 

summarized just to show different dynamic features of the 

systems, and the affects. Stewart mechanism studied in this 

paper, is depicted in Fig. 1, which  consists of an endeffector, 

a fixed platform as base, and six legs as manipulators to move 

the end effector. The legs are connected both from end effector 
to base platform by spherical joints. 

 

Fig. 1. Stewart platform mechanisim. 
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A. Legs’ dynamic analysis 

Considering legs complete rotation equilibrium 
(consisting up and down sections) according to Fig. 2, the 
equilibrium momentum equation can be written around the 
joints as below. 

𝑟𝑢 ×𝑚𝑢𝐺 + 𝑟𝑑 ×𝑚𝑑𝐺 + 𝑙𝑖𝑛𝑖 × 𝐹𝑖
𝑛 + 𝐶𝑢𝑤𝑖 + 𝐶𝑠(𝑤𝑖 − 𝜔𝑝) 

= 𝑟𝑢 ×𝑚𝑢𝑎̈𝑢𝑖 + 𝑟𝑑 ×𝑚𝑑 𝑎̈𝑑𝑖 + (𝐼𝑢 + 𝐼𝑑)𝛼𝑖 +𝑤𝑖 ×
(𝐼𝑢 + 𝐼𝑑)𝑤𝑖           (1) 

At above equation, 𝑟𝑑  and 𝑟𝑢 are Center of Gravity (CG) 
vectors, 𝐼𝑑  and 𝐼𝑢  are mass moments of inertia, 𝑚𝑑  and 𝑚𝑢 
are masses. And 𝑎̈𝑑𝑖 and 𝑎̈𝑢𝑖 are acceleration of up and down 
sections, 𝐺 is acceleration of gravity, 𝐹𝑖

𝑛 is applied force from 
platform to legs (in the general coordinates of fixed platform), 
𝛼𝑖  and 𝑤𝑖  are acceleration and rotational velocity of legs 
vectors, 𝑤𝑖 is rotational velocity vector of platform 𝐶𝑠 and 𝐶𝑢 
are viscous friction coefficients in spherical and universal 
joints. Anyway, the 𝐹𝑖

𝑛 is not the force that may cause-motion 
for calculation of motion-cause force, the upper section of leg 
shall study and the forces acting at the leg shall considered: 

𝑚𝑢𝑛𝑖𝐺 + 𝐹𝑖 + 𝑛𝑖𝐹𝑖
𝑛 − 𝐶𝑝𝑖𝑖 = 𝑚𝑢𝑛𝑖𝑎̈𝑢𝑖        (2) 

In the above equation 𝐹𝑖 is the acting force from (driver, 
motive/ stimulus) and 𝐶𝑝𝑖𝑖  is the result of amortization 

(viscous friction) in the slider joint, 𝑛𝑖 is unit vector of legs 

and 𝐶𝑝 is the viscous friction coefficient. 

 

Fig. 2. Free body diagram of forces applied to hezapas’s leg. 

B. Platforms’ dynamic equation: (Newton-Euler 

equilibrium) 

According to free diagram shown in Fig. 3 and Newton-
Euler equation, dynamic equation of the robot is described as 
below equation. 

𝑀𝑃𝐺 + 𝑅𝑃
𝑊 𝐹𝑒𝑥𝑡 −∑ 𝐹𝑖

𝑛6
𝑖=1 = 𝑀𝑃𝑥̈𝑔        (3) 

In this equation 𝑀𝑃 is the platform’s mass, 𝑥̈𝑔is the CG 

acceleration of end effector and 𝐹𝑒𝑥𝑡  is the external acting 

force on platform and 𝑅𝑃
𝑊  is the rotation matrix of final 

motive enforcer. 

𝑅𝑃
𝑊 =

[

𝐶𝜃𝑧𝐶𝜃𝑦 −𝑆𝜃𝑧𝐶𝜃𝑧 + 𝐶𝜃𝑧𝑆𝜃𝑦𝑆𝜃𝑥 𝑆𝜃𝑧𝑆𝜃𝑥 + 𝐶𝜃𝑧𝑆𝜃𝑦𝐶𝜃𝑥
𝑆𝜃𝑧𝐶𝜃𝑦 𝐶𝜃𝑧𝐶𝜃𝑧 + 𝑆𝜃𝑦𝑆𝜃𝑧𝑆𝜃𝑥 −𝐶𝜃𝑧𝑆𝜃𝑥 + 𝑆𝜃𝑧𝑆𝜃𝑦𝐶𝜃𝑥
−𝑆𝜃𝑦 𝐶𝜃𝑦𝑆𝜃𝑥 𝐶𝜃𝑦𝐶𝜃𝑥

]                (4) 

where, we assumed 𝐶𝜃𝑥 = 𝐶𝑜𝑠(𝜃𝑥), 𝑆𝜃𝑥 = 𝑆𝑖𝑛(𝜃𝑥) . 
Also momentum equilibrium (Euler) is considered toward 
central point of platform: 

𝑀𝑃𝑟̅ × 𝐺 + 𝑅𝑃
𝑊 (𝑀𝑒𝑥𝑡 +𝐺𝐶 × 𝐹𝑒𝑥𝑡) + ∑ ( 𝑅𝑃

𝑊 𝑎𝑖
𝑃 ×6

𝑖=1

𝐹𝑖
𝑛) + ∑ (𝐶𝑢𝑤𝑖 + 𝐶𝑠(𝑤𝑖 −𝜔𝑃)) =𝑀𝑃𝑟̅ × 𝑥̈𝑔 + 𝐼𝑃𝛼𝑃 +
𝜔𝑃 × 𝐼𝑃𝜔𝑃      (5) 

In (5), 𝐹𝑒𝑥𝑡 is the external momentum, CG is the position 
vector of reacting force on end effector, 𝑟̅ is the position 
vector of end effector’s CG, 𝐼𝑃 is the moment of inertia of the 

end effector in the reference coordinates {W} and 𝑎𝑖
𝑃  is the 

spherical joint points vector in the end effector’s motive 
coordinates. In Fig. 3 the center gravity and center of 
geometry are coincident. 

 

Fig. 3. Free body diagram of forces applied to endeffector. 

C. Complete dynamic equation of Stewart mechanism 

By combining of two force equations (1), and (2) and two 
momentum equations (4), and (5) of moving platform, the 
dynamic system of equations of six legs is derived as below: 

𝑀[
𝑥̈𝑔
𝛼𝑃
] + 𝜂 = 𝐽−1𝐹 + [

𝑅𝑃
𝑊 𝐹𝑒𝑥𝑡

𝑅𝑃
𝑊 (𝑀𝑒𝑥𝑡 + 𝐺𝐶 × 𝐹𝑒𝑥𝑡)

]       (6) 

𝐽−1 is inverse Jacobean matrix in (7), 𝑀 is inertial matrix 
and 𝜂 is consisting moments and gravitation Coriolis forces. 

𝐽−1 = [
𝑛1
𝑇

⋮
𝑛6
𝑇

( 𝑅𝑃
𝑊 𝑃𝑎1 × 𝑛1)

𝑇

⋮
( 𝑅𝑃
𝑊 𝑃𝑎6 × 𝑛6)

𝑇

]         (7) 

As it can be considered solving the equations system of (6)  
all kinematic variables (position, velocity, acceleration and 
physical characteristic of structure) and dynamic parameters 
(mass, moments of inertia of each component, forces and 
external moments) of end effector shall put in wrote software. 
Then solving the system of (6) and finding the acting forces 
on each leg is easily applicable by Newton-Raphson method. 

D. ADAMS simulation of Stewart dynamic 

As the aim of calculating the system dynamic is to build a 
high accuracy robot surgery, having a simulation environment 
(ambient) that owns the ability of considering of all nonlinear 
parameters will be useful. 



As some constraints could not be considered in MATLAB 
software (such as: collision, hardness and elasticity of bodies, 
friction and the volume of bodies), the ADAMS software will 
be utilized in this paper in order to simulation of hexapod 
robot’s dynamic model. The only problem with ADAMS 
software is that the nonlinear controlled could not be 
implemented directly, thus in order to control the nonlinear 
system, the software is connected to MATLAB and controlled 
online. 

Firstly, the system is designed in SOLIDWORKS (see Fig. 
4), then the mentioned design is imported to ADAMS and the 
essential constraint such as joints’ constraint, mass and 
materials of members the bodies rigidity toward each other 
and friction are applied on it. The information about design 
assumption are presented in Table I. As it is shown in Table I, 
the system has 14 component of mass, the number and 
moment of inertias. 

As it is specified in Fig. 5(a) and (b), the constraints are 
applied on the system. Also, it is assumed a bidirectional force 
on each leg that is shown with red colour. 

 

Fig. 4. Designed system in solidworks software. 

TABLE I.  DYNAMIC SYSTEM PARAMETERS. 

Parts Mass (kg) Inertia (kg.𝒎𝟐) Dimension(cm) Qty. 

Upper 

parts of 

links 

0.75 

Ix=0.002 

 

Iy=0.002 

 

Iz=0.0001 

25 6 

Lower 

parts of 

links 

1 

Ix=0.003 

 

Iy=0.003 

 

Iz=0.00012 

25 6 

End 

effector 
3 

Ix=0.012 

 

Iy=0.062 

 

Iz=0.062 

Circle(R=10) 1 

Base 6.5 

Ix=0.054 

 

Iy=0.027 

 

Iz=0.027 

Circle(R=15) 1 

 

(a) 

 

(b) 

Fig. 5. Designed system with constraints in ADAMS Software. (a) Lucid 

view. (b) Opaque view. 

III. CONTROLLING HEXAPOD’S DYNAMICS 

As mentioned, the designed dynamic system in the 
ADAMS software is very nonlinear. Thus in order to control 
the system a robust controller shall be utilized, that should be 
able to identify nonlinear parameters online. 

A. Adaptive controller designing: 

Assuming that, the dynamic equation of system is written 
as   𝑥̇ = 𝑓(𝑥, 𝑥̇) + 𝑏𝑢, the controller would be considered as 
below: 

  𝑢 = 𝑃2𝑛×2𝑛𝐸2𝑛×1         (8) 

Where 𝑃  is controller parameters, and 𝐸  is error of 
controllable states with desires. Considering the input of the 
controller as (8) always satisfies converging adaptive 
controller parameters, according to 1-8 Lema in [12]. 
Moreover, if parameters in each steps of stimulated run, 
changes with below rate, the system is stable. 

  𝑃̇̂ = −γ2𝑛×2𝑛 × 𝐸 × 𝑉
T        (9) 

In (9), state variables vector is 𝑉 = [𝑥𝑛×1; 𝑥̇𝑛×1], 𝐸 =
𝑉 − 𝑉𝑑  is the error of state variables vector, and γ  is 
converging rate of parameters. While, the stimulation of 



parameters is done by (9) this action will be continued until 
cancellation of the error. In order to evaluation of controller 
performance, the existing dynamic is controlled online in 
ADAMS software using MATLAB. The controlling diagram 
the whole system is showed in Fig. 6. 

B. Stability analysis 

The system dynamic can be considered as follows: 

   𝑀𝜃̈ = −𝑐𝑝𝑓(𝜃) + 𝑏𝑝𝑢      (10) 

where matrix 𝑀 , 𝑐𝑝  and 𝑏𝑝  are system’s coefficients. 

Considering 𝜃̇1 = 𝜃̇ = 𝜃2  and                                         

𝜃̇2 = 𝜃̈ =
1

𝑀
(−𝑐𝑝𝑓(𝜃) + 𝑏𝑝𝑢) system’ states can be 

written as: 

𝜃̇ = [
0 1
0 0

] 𝜃 +
−𝑐𝑝

𝑀
[
0
𝑓(𝜃)

] +
𝑏𝑝

𝑀
[0
𝑢
]      (11) 

where, 

𝜃̇ = [
02×2 𝐼2×2
02×2 02×2

]𝜃 + [
02×1

𝑀−1(−𝑐𝑝)𝑓(𝜃)
] + [

02×1
𝑀−1(𝑏𝑝)𝑢

]  (12) 

By considering 𝒂𝒑 = − [
0 1
0 0

] , 𝒄𝒑 = [
0 0

0 −
𝑐𝑝

𝑀

] , 𝑓(𝜃) = [
0
𝑓(𝜃)

] 

and 𝑏𝑝 = [
0 0

0
𝑏𝑝

𝑀

] , 𝑢 = [
0
𝑢
], system dynamic can be shown 

as: 

   𝜃̇ = −𝑎𝑝𝜃 + 𝑐𝑝𝑓(𝜃) + 𝑏𝑝𝑢     (13) 

We suppose that 𝑢, the control efforts, is equal to: 

   𝑢 = 𝑎̑𝜃𝜃 + 𝑎̑𝑓𝑓(𝜃) + 𝑎̑𝑟𝑟      (14) 

where variable 𝑟 represents the desired values of states(𝜃). 

For designing a PID controller, we know that this control 
effort should be considered as:   

 𝑢 = [𝑃, 𝐼, 𝐷]𝑒                  (15) 

where, 𝑃 = [𝑃, 𝐼 ∫𝑑𝑡 ,𝐷
𝑑

𝑑𝑡
] , 𝑒 = 𝜃 − 𝑟, 𝑢𝑃𝐼𝐷 = 𝑃𝐸. 

Supposing 𝑃 = [𝑃, 𝐼, 𝐷], and 𝑒 = [𝜃 − 𝑟], then, 

  𝑢 = 𝑃𝜃 − 𝑃𝑟        (16) 

Thus, by comparing the last two equations we have: 

 𝑢 = 𝑢𝑃𝐼𝐷 + 𝑢𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟        (17) 

Assuming 𝑎̑𝜃 = 𝑃 and 𝑎̑𝑟 = −𝑃 then (17) changes to: 

 𝑢 = 𝑎̑𝜃𝜃 + 𝑎̑𝑟𝑟 + 𝑎̑𝑓𝑓(𝜃)              (18) 

Consequently, 

 𝜃̇ = −𝑎𝑝𝜃 + 𝑐𝑝𝑓(𝜃) + 𝑏𝑝𝑢 = −𝑎𝑝𝜃 + 𝑐𝑝𝑓(𝜃) +
𝑏𝑝𝑎̑𝜃𝜃 + 𝑏𝑝𝑎̑𝑟𝑟 + 𝑏𝑝𝑎̑𝑓𝑓(𝜃)       (19) 

The reference model has been considered as: 

 𝜃̇𝑀 = −𝑎𝑀𝜃𝑀 + 𝑏𝑀𝑟       (20) 

The dynamic of error can be obtained from: 

 𝑒̇ = 𝜃̇ − 𝜃̇𝑀 = −𝑎𝑀(𝜃 − 𝜃𝑀) + (𝑎𝑀 − 𝑎𝑝 +

𝑏𝑝𝑎̑𝜃)𝜃 + (𝑏𝑝𝑎̑𝑟 − 𝑏𝑚)𝑟 + 𝑐𝑝𝑓(𝜃) + 𝑏𝑝𝑎̑𝑓𝑓(𝜃) (21) 

After simplification: 

𝑒̇ = −𝑎𝑀𝑒 + 𝑏𝑝(𝑎̃𝑟𝑟 + 𝑎̃𝜃𝜃) − 𝑐𝑝𝑓(𝜃) + 𝑏𝑝𝑎̑𝑓𝑓(𝜃) (22) 

And: 

𝑒̇ + 𝑎𝑀𝑒 = 𝑏𝑝 {𝑎̃𝑟𝑟 + 𝑎̃𝜃𝜃 + (𝑎̑𝑓 −
𝑐𝑝

𝑏𝑝
)

⏟      
𝑎̃𝑓

𝑓(𝜃)}     (23) 

Considering, 𝑒̇ = 𝑆𝑒, 

𝑒 =
𝑏𝑝

𝑠+𝑎𝑀
[𝑎̃𝑟𝑎̃𝜃𝑎̃𝑓] [

𝑟
𝜃
𝑓(𝜃)

]    (24) 

According to (24), dynamic of error is stable as 𝑎𝑀 is a 

positive number, if the values of 𝑎̃𝑟 , 𝑎̃𝜃  and, 𝑎̃𝑓  are 

converging. For proving that the parameters are convergence 

and using Lyapunov function, we suppose: 

{
 
 

 
 

𝕍 = 𝜃𝑇ℙ𝜃 + 𝑎̃𝑇𝛤−1𝑎̃
𝜃̇ = 𝐴𝜃 + 𝑏𝑢
𝑒 = 𝑐𝜃, 𝑐 = ℙ𝑏

𝑢 = 𝑉𝑇𝑎̃
ℙ𝐴 + 𝐴𝑇ℙ = −𝑄(𝑄 = 𝑄𝑇 > 0),

 

 𝕍̇ = −𝜃𝑇𝑄𝜃 + 2𝑎̃𝑇𝑉𝑏𝑇𝑃𝜃 + 2𝑎̃𝑇𝛤−1𝑎̇̃.     (25) 

Due to making sure that the value of 𝕍̇ is minus, it is just 

enough that the value of following terms becomes zero: 

2𝑎̃𝑇𝑉𝑏𝑇ℙ𝜃 + 2𝑎̃𝑇𝛤−1𝑎̇̃ = 0 → 𝑎̇̃ = −𝛤𝑉𝑏𝑇ℙ𝜃          (26) 

Considering, 𝑒 = 𝑐𝜃, and 𝑐 = ℙ𝑏, the adaptive rule is, 

 𝑎̇̃ = −𝛤𝑒𝑇𝑉.        (27) 

IV. DESIRED POSITION IMPLEMENTATION BY A GYRO SENSOR 

As validation of the controller, desired position will import 
to the MATLAB by serial port and using a gyro sensor and 
Arduino at mega 2560 board. This sensor is an ADXL335 type 
sensor and it is only able to measure the acceleration in 3 axes 
of the reference connected to it. In order to get the Eulerian 
angles by the acceleration of ADXL335 sensor, according to 
(4) every point in the coordinate system that is connected to 
earth can be transited to coordinate system connected to end 
effector and assuming the gravity direction is through Z (in 
earth-connected coordinate system) the rotational angles in X 
and Y axes can be derived as. 

 

Fig. 6. Connectivity diagram of used sensor and softwares. 



  𝑅𝑃
𝑤 [

𝐺𝑥
𝐺𝑦
𝐺𝑧

] = [
0
0
1
]       (28) 

  [

𝐺𝑥
𝐺𝑦
𝐺𝑧

] = 𝑅𝑃
−1𝑤 [

0
0
𝑔
]      (29) 

As the 𝑅𝑃
𝑤  is a translation vector, thus 𝑅𝑃

−1𝑤 = 𝑅𝑃
𝑤 , 

and determinant of the matrix is one. Accordingly, the 
equations will simplify to. 

  
𝐺𝑃

‖𝐺𝑃‖
=

1

‖𝐺𝑃‖
[

𝐺𝑥
𝐺𝑦
𝐺𝑧

] = [
−𝑆𝜃
𝐶𝜃𝑆∅
𝐶𝜃𝐶∅

]𝑔     (30) 

So the Eulerian angles will be derived as follow: 

  𝑡𝑎𝑛∅𝑥𝑦𝑧 = (
𝐺𝑝𝑦

𝐺𝑝𝑧
)       (31) 

 𝑡𝑎𝑛𝜃𝑥𝑦𝑧 = (
−𝐺𝑥

𝐺𝑦𝑆∅+𝐺𝑧𝐶∅
) =

−𝐺𝑥

√𝐺𝑦
2+𝐺𝑧

2
      (32) 

V. EXPERIMENT RESULTS 

Previously explained, the simulation control desired 
angles receiving and sending process are shown in Fig. 6 
simultaneously. Also, controller’s performance and the way of 
parameters estimation are shown in Fig. 7. In this figure, the 
desired amounts are inputted as below and the other amount 
are assumed as zero. The angles amounts are produced by 
accelerometer sensor. 

  ∅(𝑡) =
𝜋

6
𝑆𝑖𝑛(2𝑡)       (33) 

  𝑍 = 0.05𝑆𝑖𝑛(2𝑡) + 0.3      (34) 

Furthermore, γ2𝑛×2𝑛  is considered as 0.1𝐼2𝑛×2𝑛  as 
controller parameter and the initial condition of all other 
controller ratios are -0.3. Considering Fig. 7(c), identification 
and estimation are done as well, and the parameters of 
controller are converged. Actually, the adaptive controller has 
identified the system in less than 1 second, thus the errors are 
reduced after this converging and the system is going to trace 
the target (sensor’s data) with the minimum error. 
Furthermore, force trajectories on system are shown in Fig. 
7(d) that are valuable to choose electromotor and system 
designing for manufacturing, considering ADAMS as a 
powerful tool to simulate real environment. Furthermore, it 
can be observed from Fig. 7(c), the tracing error is decreased 
after passing the time and identifying the system’s dynamic by 
control more accurate. Which is one of the advantages of 
adaptive controllers. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 7. Adaptive controller performance. (a) Length of liknks. (b) Tracing 

error. (c) Controller parameters. (d) Applied forces from contoller to each 

link. 

VI. CONCLUSION 

Parallel robots are suitable for some surgery operations as 
they are more accurate and faster, with lower inertia and 
higher precision compression to other robotic mechanisms. 
Accordingly, in this paper, a parallel robot was introduced as 
surgical robot, controlled by implementing adaptive PD 
controller and validated with a non-linear model in ADAMS 
online. Also, one of the other goals of this paper is to study the 
fabrication feasibility of the robot. Finally, the simulation 
results showed that the adaptive controller was able to identify 
dynamic of system and proceeded in the way of minimizing 
error and complete tracking. After ample experiments, and 
improving the robot dynamics, manufacturing the robot, 



sensitivity analysis of controller parameters are the topics that 
will be appeared in our future publications. 
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