

FT-IR, FT-Raman, NMR spectra, and molecular structure investigation of C-6 fluoroalkylated pyrimidine: A combined experimental and theoretical study

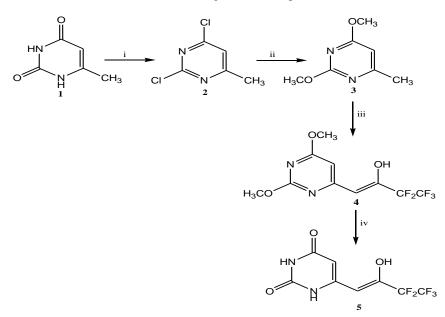
Hossein Hooshyar Department of Chemistry, Islamic Azad University Mahabad Branch, Islamic Azad University Mahabad, Iran Islamic Azad University Mahabad Branch Mahabad, Iran <u>Hooshyar94@gmail.com</u>

Hamid Azizi Department of Chemistry, Islamic Azad University Mahabad Branch, Islamic Azad University Mahabad, Iran Islamic Azad University Mahabad Branch Mahabad, Iran

Abstract— The FTIR and FT Raman spectra of C-6 fluoroalkylated pyrimidine were recorded in the regions 4000–400 and 3500–100 cm–1, respectively. The optimized geometry, wavenumber, and several thermodynamic properties of title compound were studied using ab initio Hartree–Fock and DFT methods with basis set 6-31G**. A complete vibrational assignment aided by the theoretical harmonic wavenumber analysis was proposed. The calculated harmonic vibrational frequencies were compared with experimental FTIR and FT Raman spectra. Based on the comparison between calculated and experimental results and the comparison with related molecules, assignments of fundamental vibrational modes were made. The X-ray geometry and experimental frequencies were compared with the results of theoretical calculations. For geometric data, good agreement between theory and experiment is obtained for the HF and B3LYP levels. In addition, 1H- and 13C-nuclear magnetic shielding constants of this compound were calculated by employing the direct implementation of the gauge including-atomic-orbital (GIAO) method at the Hartree–Fock (HF) and DFT using 6-31G** basis set.

Keywords- C-6 fluoroalkylated pyrimidin, Optimized geometry, Hartree–Fock, Harmonic vibrational frequencies

1. Introduction


Fluorine containing compounds are widely used in the synthesis of pharmaceuticals due to their favourable chemical and biological properties such as solubility and bioavailability; they enhance the lipophilicity and thus increase the rate of cell penetration and transport of drug to an active site [1]. The excellent biological activities exhibited by 6-substituted uracil derivatives provide a new emphasis to explore the chemistry and biological activities of these pyrimidine derivatives [2–7]. A large number of acyclic nucleoside analogues showed antiviral activities against herpes viruses due to their selective and efficient activation through monophosphorylation by the viral enzyme in the intact cells [8, 9]. Therefore, radiolabeling of these antiviral agents with the positron-emitting isotope 18F allows in non-invasive imaging of the viral thymidine kinase (TK) enzyme activity by means of positron- emission tomography (PET) [10,11]. Besides, the PET technique has proven to be vital in early detection of cancer and monitoring the efficacy of chemo- or radiotherapy response [12, 13]. Furthermore, we have reported that 18F-radiolabeled C-6 acyclic pyrimidine nucleosides can be

phosphorylated by the herpes simplex virus type 1 TK [10, 11]. Fluoroalkylated pyrimidine derivatives 4 [7] and 5 were evaluated for their activity against human carcinoma cell lines. Comparison of cytostatic activities of 4 and 5 against acute lymphoblastic leukemia (Molt-4), colon carcinoma (HCT 116 and SW 620), breast carcinoma (MCF-7) and lung carcinoma (H 460) cell lines showed that demethoxylation caused the absence of inhibitory effect of novel 2,4-pyrimidinedione derivative 5. While compound 4 showed moderate activity against cell lines (IC50 = 43-76 lM), its demethoxylated structural congener showed no activity (IC50 > 100 lM).

2. Experimental

Compounds (2–5) were synthesized as illustrated in Scheme 1. Melting points were determined on a Kofler micro hot-stage apparatus (Reichert, Wien) and are uncorrected. The electron impact mass spectra were recorded with an EXTREL FT MS 2002 instrument with ionizing energy of 70 eV. 1H and 13C NMR 1D and 2D spectra were recorded on a Bruker Avance 600 MHz NMR spectrometer, operating at 150.92 MHz for the 13C resonance, and Varian Unity Inova 300 MHz NMR spectrometer. The samples of 4 and 5 were dissolved in CD3OD and DMSO-d6, respectively, and measured in 5 mm NMR tubes. The 1H, 13C and 19F NMR chemical shift values (d) are expressed in ppm and coupling constants (J) in Hz. Proton and carbon chemical shifts are referred to TMS, whereas fluorine chemical shifts are given with respect to CC13F.

Scheme 1. Reagents and conditions: (i) POCl3; (ii) Na/MeOH; (iii) LDA, THF, ethyl pentafluoropropionate; (iv) NaI, Me3SiCl, MeCN.

3. Calculations Details

All the calculations were performed with the Gaussian 03W program package on a double Xeon/3.2 GHz processor with 8 GB Ram.[12] The molecular structure of the C-6 fluoroalkylated pyrimidine, in the ground state are optimized by using the Hartree-Fock (HF)[13], density functional using Becke's three-parameter hybrid method[14] with the Lee, Yang, and Parr correlation functional methods[15](B3LYP) with the standard 6-31G* [16] and 6-31+G* basis sets. The vibrational frequencies were also calculated with these methods. The frequency values computed at these levels contain known systematic errors [17]. Therefore, we have used the scaling factor values of 0.9135, 0.9163, and 0.9806 and for HF and B3LYP, respectively. We have also calculated optimal scaling factors for all investigated methods. The assignment of the calculated wave numbers

4. Results and Discussion

4.1 Geometric parameters

Calculated energies for title molecule, determined by HF and B3LYP/all basis sets are presented in Table 1. As clearly seen from the values given in Table 1, on the calculated energies, there is a little difference between basis sets for 6-311 (or 6-31), use of the basis sets of larger sizes give rise to increases in the differences between the calculated energies of the title molecule. However, when we compared the 6-31 and 6-311 basis sets the difference is large.

Basis sets	HF	B3LYP
basis sets	Energy (Hartree)	Energy (Hartree)
311+G(d,p)	-1214.9180736	
311G(d,p)	-1214.8971629	
311G(d)	-1214.8771319	
31+G(d,p)	-1214.6410538	-1220.9080026
31G(d,p)	-1214.6083582	-1220.848366
31G(d)	-1214.5883907	-1220.831411

4.1. Geometric parameters

X-ray diffraction and calculated for the isolated state structures of the C-6 fluoroalkylated pyrimidine molecule with atom numbering are presented in Fig. 1.

The title compound crystallized in monoclinic space group P21/c, with the cell dimensions a = 6.9062 (4) (Å), b = 23.5039 (11) (Å), c = 9.6244 (5) (Å), $\beta = 126.763(6)$ (°) and Volume= 1251.55 (Å³). In 4, two methoxy groups are bonded to pyrimidine ring atoms C-2 and C-4, and a 2-hydroxy-3, 3, 4, 4, 4-pentafluoro-1-butenyl moiety is bonded to the pyrimidine ring atom C-6. In this work, we performed full geometry optimization of the title compound. The main selected bond lengths and angles as well as torsion angles by HF and B3LYP methods with 6–31G (d) and 6-31+G (d) as basis set are collected in Table 1.

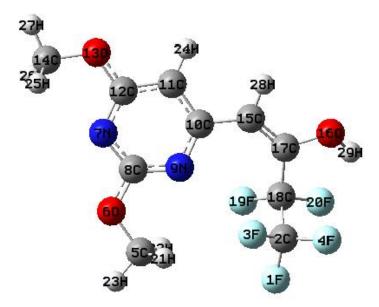


 Table 2

 Optimized and experimental Bond Lengths (Å) and Angles (deg) of the C-6 fluoroalkylated pyrimidine

Opt	Optimized and experimental Bond Lengths (Å) and Angles (deg) of the C-6 fluoroalkylated pyrimidine								
Para	ameter –		HI			B3LYP	— Experimental		
		6-31g**	6-31+g**	6-311g*	*	6-31g** 6-31+g**	Experimental		
Bon	d lengths (\mathbf{A}°)								
1	C8-N9	1.307	1.308	1.305	1.326	1.327	1.330		
2	C8-N7	1.329	1.329	1.328	1.344	1.345	1.319		
3	C8-O6	1.317	1.316	1.314	1.342	1.341	1.326		
4	C5-O6	1.413	1.415	1.412	1.432	1.434	1.441		
5	N7-C12	1.304	1.304	1.301	1.325	1.324	1.323		
6	C12-O13	1.317	1.317	1.315	1.342	1.342	1.341		
7	O13-C14	1.417	1.418	1.416	1.435	1.438	1.437		
8	C11-C12	1.402	1.404	1.402	1.406	1.408	1.381		
9	C10-C11	1.370	1.370	1.368	1.392	1.392	1.381		
10	C10-N9	1.338	1.338	1.336	1.354	1.355	1.363		
11	C10-C15	1.479	1.483	1.479	1.463	1.467	1.439		
12	C15-C17	1.321	1.321	1.320	1.347	1.347	1.343		
13	O16-C17	1.351	1.353	1.351	1.362	1.367	1.319		
14	C18-F19	1.321	1.322	1.316	1.344	1.346	1.353		
15	C18-F20	1.352	1.351	1.347	1.388	1.389	1.342		
16	C2-F1	1.314	1.315	1.310	1.340	1.343	1.300		
17	C2-F3	1.309	1.309	1.304	1.335	1.337	1.313		
18	C2-F4	1.316	1.316	1.311	1.346	1.348	1.315		
Bon	d angles (°)								
1	N7-C8-N9	127.0	126.9	127.0	127.6	127.4	126.4		
2	O6-C8-N9	119.4	119.4	119.4	119.2	119.5	113.3		
3	C8-O6-C5	119.1	119.5	119.3	117.3	118.0	117.6		
4	O6-C8-N7	113.5	113.5	113.5	113.1	113.0	120.3		
5	C8-N7-C12	115.9	116.1	116.1	115.1	115.5	115.6		
6	N7-C12-O13	119.8	119.8	119.9	119.6	119.7	118.7		
7	C12-O13-C14	118.9	119.2	119.0	117.2	117.7	118.1		
8	O13-C12-C11	117.3	117.3	117.3	117.2	117.3	117.4		
9	N7-C12-C11	122.8	122.7	122.7	123.1	122.9	123.9		
10	C12-C11-C10	115.6	115.5	115.6	116.3	116.3	116.7		
11	C11-C10-C15	118.4	118.5	118.2	118.2	117.5	123.7		
12	C15-C10-N9	119.4	119.1	119.5	120.3	120.9	116.3		
13	C11-C10-N9	122.0	122.2	122.1	121.3	121.4	120.0		
14	C10-N9-C8	116.4	116.3	116.4	116.3	116.2	117.4		
Tor	sion angles(°)								
1	C5-O6-C8-N9	-0.9	-0.7	-0.8	-0.3	-0.4	178.4		
2	C14-O13-C12-N7	0.0	-0.0	-0.08	0.0	0.1	1.4		
_	O16-C17-C18-F19	-157.7	-160.7	-158.5			178.1		
	016-C17-C18-F20	-40.2	-43.2	-40.9	-29.6	-32.9	61.2		
	F19-C18-C2-F4	167.6	169.6	167.8	164.7	168.7	71.5		
5		/			-0/	10017	, 110		

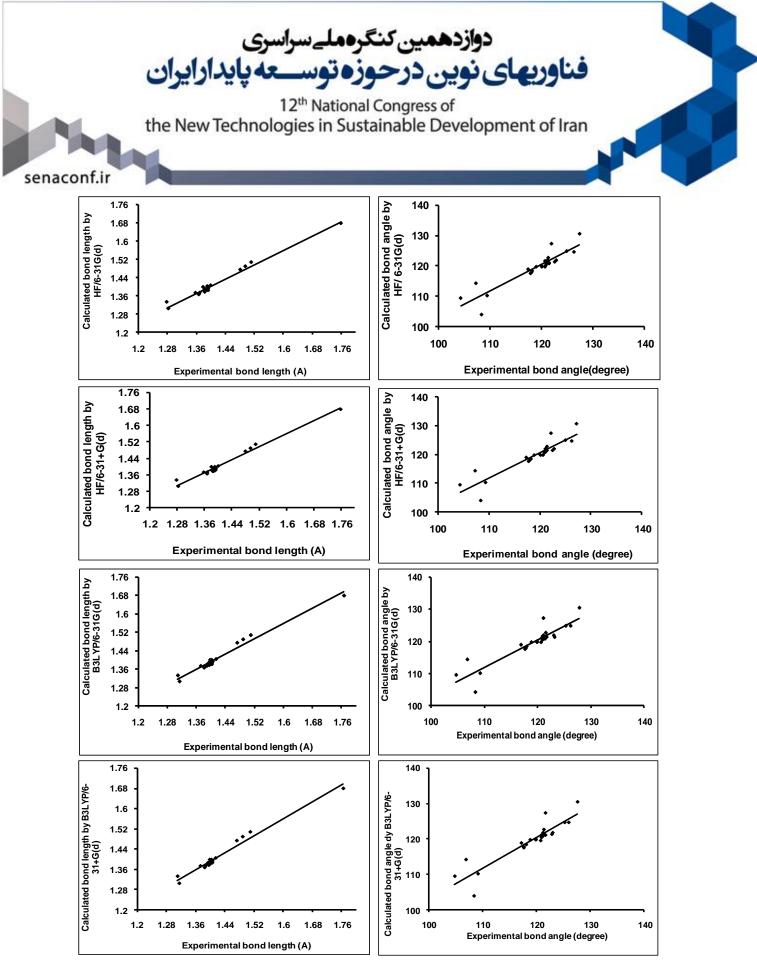


Figure 2a. Calculated bond lengths and bond angles in comparison with experimental data



Figure 2b. Calculated bond lengths and bond angles in comparison with experimental data

As follows from this comparison, the bond lengths and angles calculated for title compound show quite good agreement with experimental values. The agreement for bond angles is not as good as that for the bond distances (figure 2a). However, owing to our calculations, DFT method correlates well for the bond length and angle in comparison to the HF method. The largest difference between experimental and calculated HF, DFT ($6-31+G^*$) bond length and angle is about 0.079 A°, 0.086 A° (parameter number 20), -6.96° and -7.34° (parameter number 23) respectively. The results can, however, better be represented in graphical form as has been given in Figure 2b.As a result, the optimized bond lengths and angles by DFT method show the best agreement with the experimental values.

4.2. Vibrational assignments

Using the GAUSSIAN 98 program 1 [14], we first optimize the geometry of C-6 fluoroalkylated pyrimidine with the HF and B3LYP methods and 6-31G (d,p) basis set. Then, we calculate the vibrational frequencies of title compound with the same method and basis set. In order to obtain the spectroscopic signature of C-6 fluoroalkylated pyrimidine molecule, we performed a frequency calculation analysis. Calculations were made for a free molecule in vacuum, while experiments were performed for solid sample, so there are disagreements between calculated and observed vibrational wavenumbers. Experimental and theoretical Raman and Infrared spectra are shown in Figs. 2 and 3, respectively. The experimental wavenumbers are tabulated in Table 3 together with the calculated wavenumbers of studied molecule. Our results are in agreement with experiment. Title compound contains 29 atoms so that, it has 81 normal modes. For C-6 fluoroalkylated pyrimidine molecule, group the vibrational modes can be classified, O-H stretching, C=C and C-H ring stretching, C-O-C stretching, C-F stretching, C=C-H rocking, C=C-H bending, C-Br bending, C=O bending, C-C- C bending, C-C-N bending, C-N-H bending, ring bending, ring breathing, and ring torsion modes. Table 4 show the vibrational frequencies and assignments of the vibrational frequencies (cm⁻¹) of the 2-(4-methyl-2-biphenyl)-4amino-1, 2, 4-triazole-3-thiol. To our knowledge, there is no complete, assigned, experimental vibrational spectrum of 2-(4-methyl-2-biphenyl)-4-amino-1, 2, 4-triazole-3-thiol there exists no information at all. However, several modes for title compound have been assigned and experimental frequencies measured [11]. the vibrational bands assignments have been made by using both the animation option of GaussView 3.0 graphical interface for gaussian programs. The frequency values computed at these levels contain known systematic errors. Therefore, we have used the scaling factor values of 0.9135, 0.9163 and 0.9806 for HF/6-31G*, 6-31+G* and B3LYP/6-31G*, respectively. All quoted vibrational frequencies reported along the paper are thus scaled values. Frequency changes well reflect the geometry changes.

Table 3

Calculated wave numbers for 2-(4-methyl-2-biphenyl)-4-amino-1, 2, 4-triazole-3-thiol using HF/6-31G (d,p) level ^a

Mode	Assignments	Wave n	Wave number		Red	Force	Raman
No.	Assignments	Unscaled	Scaled	Inten.	mass	const.	active
ν1	vO-H		3776.4	2.03E+02	1.0663	10.9398	123.213
ν2	vC-H	80	3088.3	1.84E-01	1.0955	7.5164	78.5033
ν3	vC-H		3038.6	2.74E+00	1.0898	7.2385	62.6614
ν4	vCH3 asym.		3008.7	3.46E+01	1.1090	7.2217	111.346
ν5	vCH3 asym.		3006.0	3.74E+01	1.1088	7.2075	97.0444
ν6	vCH3 asym.		2996.5	3.54E+01	1.1084	7.1599	37.1515
ν7	vCH3 asym.	75	2996.1	2.24E+01	1.1080	7.1553	37.5282
ν8	vCH3 sym.		2919.2	2.69E+01	1.0294	6.3103	230.774
ν9	vCH3 sym.		2919.0	6.33E+01	1.0293	6.3093	12.4748
v10	vC=C		1744.9	1.33E+02	8.1829	17.9233	409.728
v11	vN=C-N+N=C-C		1622.2	7.21E+02	9.5158	18.0156	71.9046
v12	vN=C-N+N=C-C	70	1615.6	6.04E+02	7.9363	14.9025	11.0823
v13	бСН3		1515.2	1.37E+02	2.655	4.3863	6.3392
v14	бСН3		1493.0	1.02E+02	1.8946	3.0380	1.7956

دوازدهمین کنگردملےسراسری فناوریہای نوین در حوزہ توسیعہ پایدار ایران

12th National Congress of the New Technologies in Sustainable Development of Iran

senaconf.ir

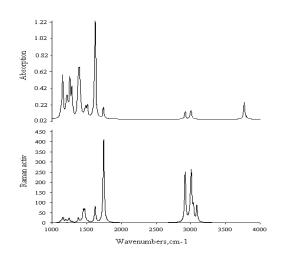
CH2 Scis.		1477.8	2.01E+01	1.0740	1.6875	7.6965
CH2 Scis.		1476.4	3.49E+01	1.0659	1.6716	11.8649
CH2 Scis.	65	1471.2	4.44E+00	1.0472	1.6305	18.7360
CH2 Scis.		1468.7	4.84E+00	1.0466	1.6241	23.6196
бСН3		1451.9	2.60E+01	2.2669	3.4377	54.0201
бСН3		1425.1	3.73E+01	1.9747	2.8851	6.6621
бСН3		1403.6	4.32E+02	2.2074	3.1284	2.8293
vC-C+\deltaCH3		1390.8	3.19E+02	7.8873	10.9763	2.3893
бСН3	59	1378.7	2.89E+02	4.4913	6.1418	20.6273
vC-F		1290.1	2.51E+02	8.6342	10.3378	1.6776
ν C-F+		1286.3	8.78E+01	4.4431	5.2884	3.7805
δΟΗC+δΗCC		1260.3	4.22E+02	3.9411	4.5036	2.1817
δΟΗC		1247.1	7.69E+01	1.5957	1.7855	20.6926
δΟΗC+δΗCC		1229.1	6.02E+01	2.7275	2.9644	4.7112
бСН3		1216.2	1.41E+02	3.4252	3.6446	1.5527
бСН3		1209.0	1.00E+02	2.1373	2.2474	3.8358
		1196.6	3.37E+01	2.2027	2.2690	11.0451
Twist.CH2	50	1168.6	1.65E+00	1.2686	1.2462	2.8008
Twist.CH2		1165.9	2.67E+00	1.2666	1.2387	4.2792
δНСССН	48	1156.2	4.88E+02	2.6375	2.5365	21.5917
Twist.CH2+vC-O-C		1136.9	8.74E+01	3.9266	3.6514	5.2255
δΗCC	46	1123.9	6.76E+01	3.2958	2.9950	6.2706
δHCC+vC-O-C	45	1066.0	4.80E+01	3.3864	2.7684	6.4909
vCF2-CF3		1039.7	1.80E+02	8.3798	6.5170	3.2654
v O-CH3	43	1001.1	1.25E+01	6.4287	4.6353	8.5273
Ring breathing	42	986.0	1.36E+01	9.4009	6.5754	24.0424
	CH2 Scis. CH2 Scis. CH2 Scis. δ CH3 δ CH3 δ CH3 ν C-C+ δ CH3 δ CH3 ν C-F ν C-F+ δ OHC+ δ HCC δ OHC δ OHC+ δ HCC δ CH3 δ CH3 Twist.CH2 Twist.CH2 Twist.CH2 δ HCCCH Twist.CH2+ ν C-O-C δ HCCC+ ν CO-C δ HCC+ ν CO-C ν CF2-CF3 ν O-CH3 Ring breathing	CH2 Scis. 65 CH2 Scis. 65 δ CH3 δ CH3 δ CH3 δ CH3 δ CH3 59 ν C-C+ δ CH3 59 δ CH3 59 ν C-F ∇ C-F ν C-F+ δ OHC+ δ HCC δ OHC δ OHC δ OHC+ δ HCC δ CH3 Twist.CH2 50 Twist.CH2 50 Twist.CH2 50 Twist.CH2 50 δ HCCCH 48 Twist.CH2+ ν C-O-C δ HCC 46 δ HCC+ ν C-O-C 45 ν CF2-CF3 ν ν O-CH3 43 Ring breathing 42	CH2 Scis.1476.4CH2 Scis.651471.2CH2 Scis.1468.7 δ CH31451.9 δ CH31425.1 δ CH31403.6 ν C-C+ δ CH31390.8 δ CH359 δ CH359 δ CH31290.1 ν C-F1290.1 ν C-F+1286.3 δ OHC+ δ HCC1260.3 δ OHC1247.1 δ OHC+ δ HCC1229.1 δ CH31216.2 δ CH31209.01196.61165.9Twist.CH250Twist.CH21165.9 δ HCC46Twist.CH2+ ν C-O-C1136.9 δ HCC461123.9 δ HCC+ ν C-O-C45 δ HCC+ ν C-O-C 43 1001.1Ring breathing42986.0	CH2 Scis. 1476.4 $3.49E+01$ CH2 Scis.65 1471.2 $4.44E+00$ CH2 Scis. 1468.7 $4.84E+00$ δ CH3 1451.9 $2.60E+01$ δ CH3 1425.1 $3.73E+01$ δ CH3 1425.1 $3.73E+01$ δ CH3 1403.6 $4.32E+02$ v C-C+ δ CH3 1390.8 $3.19E+02$ δ CH3 59 1378.7 $2.89E+02$ v C-F 1290.1 $2.51E+02$ v C-F 1260.3 $4.22E+02$ δ OHC+ δ HCC 1247.1 $7.69E+01$ δ OHC+ δ HCC 1229.1 $6.02E+01$ δ CH3 1216.2 $1.41E+02$ δ CH3 1209.0 $1.00E+02$ 196.6 $3.37E+01$ T wist.CH2 50 1168.6 T wist.CH2 50 1168.6 T wist.CH2+ v C-O-C 1136.9 $8.74E+01$ δ HCC 46 1123.9 $6.76E+01$ δ HCC+ v C-O-C 45 1066.0 $4.80E+01$ v CF2-CF3 1039.7 $1.80E+02$ v O-CH3 43 1001.1 $1.25E+01$ Ring breathing 42 986.0 $1.36E+01$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

^a Harmonic frequencies (in cm⁻¹), IR intensities (km mol⁻¹), reduced masses (amu) and force constants (m dyn A^{o-1}). ν , stretching; δ , in-plane bending; γ , out-of-plane bending; ω , wagging; a, asymmetric, s, symmetric; ρ , rocking; Twist., twisting; Scis., scissorings; τ , torsion.

Continue to table 3

Mode No.	Assignments	Wave nu Unscaled Scaled	imber	- IR Inten.	Red mass	Force const.	Raman active
v41	v O-CH3		950.6	4.60E+01	5.7471	3.7365	5.8948
v42	γCH	40	913.4	4.43E+01	1.5796	0.9482	30.221
v43	γCHRing+γCH		845.3	6.57E+01	2.6198	1.3467	0.4842
ν44	γNCN+γCHRing		815.7	4.41E+00	2.8058	1.3431	0.5442
v45	νCF3+δHCC	37	761.7	1.95E+01	10.4333	4.3555	2.8073
v46			746.6	3.66E+01	6.8215	2.7353	2.8385
v47	τHCCRing		723.8	5.39E+00	3.6438	1.3735	0.1356
v48	τΗCCO		708.1	1.86E+01	6.0399	2.1788	2.4276
v49	τΟСС		686.1	1.34E+00	7.4232	2.5139	3.2817
v50	τHCC		666.0	2.19E+01	5.3089	1.6940	9.5228
v51			608.8	3.95E+00	10.9707	2.9256	1.9774
v52	γCCCRing	30	594.6	6.28E+00	6.3370	1.6121	2.9471
ν53	γFCF		572.1	3.38E+00	10.1020	2.3791	3.4975
ν54	γCCC		539.1	4.64E+00	9.7015	2.0287	2.6836
ν55	γCCC		513.5	9.38E+00	8.9137	1.6909	0.8974
v56	ү СО-СНЗ		504.6	4.20E+00	8.5885	1.5732	4.5415

دوازدهمین کنگردملےسراسری فناوریہای نوین در حوزہ توسیعہ یایدارایران


12th National Congress of the New Technologies in Sustainable Development of Iran

senaconf.ir

conf.ir								-
v57	τHCCO	25	461.5	2.17E+01	8.4777	1.2992	0.9303	
v58	δCO-CH3+		452.6	1.02E+01	5.6853	0.8379	1.3544	
v59	τ CF2-CF3		389.5	2.01E+00	11.1976	1.2224	1.1785	
v60	δОН		366.4	1.72E+01	6.9138	0.6679	0.7109	
v61	τΗΟϹϹ		346.5	1.44E+00	5.7380	0.4958	1.6075	
v62	δОН	20	330.0	1.69E+02	1.2669	0.0993	4.4160	
v63	τΗΟϹϹ		314.4	1.94E+01	5.5123	0.3922	0.9091	
v64	ωCF2+δFCC		285.5	3.06E+00	12.3249	0.7230	2.7623	
v65	δСО-СН3		272.7	5.83E+00	4.6132	0.2469	2.6270	
v66	ү СО-СНЗ		260.1	5.68E+00	6.1939	0.3015	0.8966	
v67	Twist. CF2+y CO-CH3	15	256.6	2.96E+00	7.3096	0.3463	0.7923	
v68	δ CH3+τRing		239.2	8.65E-01	3.0778	0.1268	2.0642	
v69	γ OH+τ CF3		212.3	6.21E+00	10.4287	0.3382	0.0853	
v70	δ CH3		190.	2.24E+00	1.7640	0.0461	1.1403	
v71	δ CH3		188.8	5.47E-01	2.1877	0.0561	0.5819	
ν72	δ CO-CH3	10	179.1	5.46E+00	3.3440	0.0772	0.5273	
ν73	δ CH3		166.9	4.79E-01	1.2814	0.0257	0.5089	
ν74	τCOH		144.3	6.36E-01	9.3960	0.1408	0.5282	
v75	ү СО-СНЗ		109.2	8.39E-01	4.5643	0.0392	1.8202	
ν76	ү СО-СНЗ		104.9	7.21E+00	3.7033	0.0294	0.3384	
ν77	δ CH3		90.1	1.29E-01	5.8740	0.0343	0.8262	
v78	δ OH+ δ CH3		67.2	1.90E+00	5.1335	0.0167	0.4930	
ν79	δ CF3+ δ CH3		54.9	2.78E-01	10.9351	0.0237	0.1264	
v80	δCF3		37.0	3.44E-02	13.5457	0.0134	0.1706	
v81			14.0	4.71E-02	6.6030	0.0009	1.7649	

Harmonic frequencies (in cm⁻¹), IR intensities (km mol⁻¹), reduced masses (amu) and force constants (m dyn A^o ⁻¹). v, stretching; δ , in-plane bending; γ , out-of-plane bending; ω , wagging; a, asymmetric, s, symmetric; ρ , rocking; Twist., twisting; Scis., scissorings; τ , torsion.

The simulated scaled and unscaled IR and Raman spectrum obtained from HF/6-31G (d,p) is presented in Figures 4. From the calculated frequencies the higher intensities correspond NH2 wagging, N27-C29 stretching. The strongest bands at 1703.93 cm⁻¹ have been assigned to the C=N stretching groups modes. Raman ring C-H symmetry, asymmetry stretching and the symmetrical stretching in CH₃ (CH₃ sym. stretch) modes have dominate intensities.

Figure 4. Comparison theoretical Raman and Infrared spectra of C-6 fluoroalkylated pyrimidine computed at HF/6-31G (d,p) level.

Raman spectroscopy requires a change in polarisability, thus is more sensitive to the non-polar motions of the molecule while Infrared spectroscopy requires a change in dipole moment thus is sensitive to the polar motions of the molecule. These two techniques provide information on the heavy atom motions of the molecule, for example vC=C, vC=N.

The very strong bands at 1744.934 cm⁻¹ in FT-IR (1714 cm⁻¹, FT-Raman) and 1783 cm⁻¹ in FT-IR (1783 cm⁻¹, FT-Raman) spectra were assigned as asymmetric and symmetric C=O stretching vibration, respectively. The theoretically computed values (1764 and 1709 cm⁻¹, B3LYP) show very good agreement with experimental results. The HF method calculated vC=O frequencies higher than the B3LYP method

4.2a C–NH2 vibrations: The molecule under investigation possesses only one NH2 group and hence one expects one symmetric and one asymmetric N–H stretching vibrations in NH2 group. In all the primary aromatic amines, the N–H stretching frequency occurs in the region $3300-3500 \text{ cm}^{-1}$ [19]. Hence, the weak bands in IR spectrum were located at 3515.68 and 3418.52 cm⁻¹ assigned to N–H asymmetric and symmetric stretching vibrations, respectively in NH2 group. The computed –NH2 scissoring vibration at 1697.27 cm⁻¹ in HF/6-31G^{*} is in agreement with the expected experimental value at

4.2b Methyl group vibrations: The title compound 2-(4-methyl-2-biphenyl)-4-amino-1, 2, 4-triazole-3-thiol, possesses one CH₃ group attached to the benzene ring. There are nine fundamentals one can expect to CH₃ group, namely the symmetrical stretching in CH₃ (CH₃ sym. stretch) and asymmetrical stretching (in plane hydrogen stretching mode); the symmetrical (CH₃ sym. deform) and asymmetrical (CH₃ asym. deform) deformation modes; the in-plane rocking, out-of-plane rocking, twisting and bending modes. For the methyl compounds, the stretching mode appears in the range of 2825–2870 cm⁻¹, lower in magnitude compared to its value in CH₃ compounds (2860–2935 cm⁻¹), whereas the two asymmetric modes for both the types of compounds lie in the same region of 2998–2925 cm⁻¹. The FTIR bands at 2998 and 2925 cm⁻¹ and FT-Raman band at 2851 and 2739 cm⁻¹ represent the asymmetric and symmetric CH3 stretching vibrations of the methyl group of 2-(4-methyl-2-biphenyl)-4-amino-1, 2, 4-triazole-3-thiol.

4.2c C=N, C–N vibrations: The identification of C–N vibrations is a difficult task, since the mixing of vibrations is possible in this region. However, by using both the animation option of GaussView 3.0 graphical interface for gaussian programs the C–N vibrations identified. Silverstein [19] assigned C–N stretching absorption in the region 1382–1266 cm⁻¹ for aromatic amines. The IR bands appearing at 1510 and 1441 cm⁻¹ are assigned to vC=N vibrations and 1374 and 1209 cm⁻¹ are assigned to vC–N vibrations with the δ CH for the title compound.

4.2d C-S, S–H vibrations: The IR bands appearing at 2697.98 and 1047.82 cm⁻¹ are assigned to vS-H vibrations and 945.74 and 161.52 cm⁻¹ are assigned to S-H in plane bending vibrations with the out plane for the title compound.

4.3 VCD Spectra

Vibrational Circular Dichroism (VCD) spectroscopy in the Near Infrared (NIR) range was successfully tried long time ago [20], in one case even earlier than the more known and used VCD spectroscopy in the IR range. More recently some advancement has been achieved in developing new instrumentation, based either on dispersive or Fourier transform interferometric technologies [21, 22]. The usability of the NIR-VCD data needs though a parallel advancement in the interpretation of the spectra. Such an interpretation is hampered by many factors, among which two are of utmost importance: the enormous number of modes that may in principle contribute to the overtone regions and the essential role played by anharmonic terms in determining both the wave functions and the functional form of the electric and magnetic dipole moment operators. Necessarily one

has to resort to some kind of approximations. The optical activity of asymmetric molecules is explained when a plane polarized radiation passes through an active medium. The plane of the emergent plane polarized radiation rotates by an angle. The plane polarized beam can be considered as a superposition of two oppositely rotating circularly polarized component. The absorbance coefficient is defined as, $\Delta \varepsilon = \varepsilon_R - \varepsilon_L [23]$. Simulated VCD and absorption spectra of the 2-(4-methyl-2-biphenyl)-4-amino-1, 2, 4-triazole-3-thiol are plotted in Figure 5. These simulations were obtained with HF/6-31G (d) level calculation.

Figure 5. Comparison of a) scaled and b) unscaled computed VCD spectra of the 2-(4-methyl-2-biphenyl)-4-amino-1, 2, 4-triazole-3-thiol at HF/6-31G (d) level

4.4 ¹H and ¹³C NMR

¹H and ¹³C NMR 1D and 2D spectra were recorded on a Bruker Avance 600 MHz NMR spectrometer, operating at 150.92 MHz for the 13C resonance, and Varian Unity Inova 300 MHz NMR spectrometer. The samples of 4 and 5 were dissolved in CD3OD and DMSO-d6, respectively, and measured in 5 mm NMR tubes. The ¹H, ¹³C and ¹⁹F NMR chemical shift values (d) are expressed in ppm and coupling constants (J) in Hz. Proton and carbon chemical shifts are referred to TMS, whereas fluorine chemical shifts are given with respect to CCl3F. The sample temperature was set at 298 K and controlled to approximately ±0.5 K. 1H NMR measurements were performed under the following spectral and processing conditions: 4.0 kHz sweep width, 90_ pulse (11 ls), 2 s relaxation delay, 32 K time domain, zero filling to 64 K and line broadening of 0.5 Hz. 2D NMR spectra: NOESY: 4096 (x2) _ 256 (x1) data points, 16 scans per FID, 32 dummy scans, a pulse delay of 2 s, with mixing time of 150 ms, 4.0 kHz (x2) _ 4.0 kHz (x1) spectral width, transformed after multiplication with a sine-bell squared filter shifted by $\pi/2$ in both x2 and x1 to give 4 K _ 1 K matrix.

The experimental and calculated values for ¹H, ¹³C and ¹⁹F NMR are shown in Tables 3-5. As in Fig. 1, the studied molecule shows teen different carbon atoms, which is consistent with the structure on the basis of molecular asymmetry. ¹³C and ¹H chemical shift values (with respect to TMS) have been calculated for the optimized structures of the title compound and compared to the experimental chemical shift values. As can be seen in Fig. 1, molecular structure of the title compound includes pyrimidine ring. This ring includes nitrogen atoms which show electronegative property. On the other side, oxygen atoms show more electronegative property than nitrogen and carbon atoms. Therefore, the chemical shift values of C12, C10 and C8 have been

observed at 171.331 ppm , 165.456 ppm and 162.018 ppm calculated (with respect to TMS) by using HF method and 165.11 , 155.19, 160.62 by using B3LYP method (in Table 4). Similarly, other carbon peaks of C5, C14, (O–CH3) are observed at 49.882, 48.90 ppm and 53.533, 52.22 ppm calculated by using HF and B3LYP methods, respectively.

As can be seen from Tables 3, 4 and 5 there is a good agreement between experimental and theoretical chemical shift results for the title compound.

Table 3

Experimental and theoretical, ¹³C NMR isotropic chemical shifts (with respect to TMS) of C-6 fluoroalkylated pyrimidine by HF and DFT (B3LYP) methods.

A 4	¹³ C c		
Atomic specific	HF/6-31G(d,p) ^a	B3LYP/6-31G(d,p) ^a	Experimental ^a
C1: C2	106.336	124.887	120.27
C2: C5	49.882	53.533	
C3: C8	162.018	160.62	162.71
C4: C10	165.456	155.19	163.59
C5: C11	95.678	99.501	96.15
C6: C12	171.331	165.11	173.71
C7: C17	142.057	141.85	167.63
C8: C18	102.151	117.06	110.49
C9: C 14	48.90	52.22	
C10:C 15	114.14	110.07	

^a All values in ppm

Table 4

Experimental and theoretical, ¹H NMR isotropic chemical shifts (with respect to TMS) of C-6 fluoroalkylated pyrimidine by HF and DFT (B3LYP) methods.

	· · · · ·		
Atomic specific	HF/6-31G(d,P) ^a	¹ H chemical shifts B3LYP/6-31G(d,P) ^a	Expt.[11]
H1:(H 21,22,23)	3.79, 3.75, 3.72	3.90, 3.96, 3.68	4.01
H2:(H24)	6.13	5.98	6.32
H3:(H 25,26,27)	3.83,3.84, 3.67	3.95, 3.96, 3.59	4.07
H4:(H 28)	6.62	6.13	6.47
H5:(H 29)	3.57	4.90	

^a All values in ppm

Table 5

Experimental and theoretical, ¹⁹F NMR isotropic chemical shifts (with respect to CCl3F) of C-6 fluoroalkylated pyrimidine by HF and DFT (B3LYP) methods.

Atomic			Evet [11]		
specific	6-31G(d,P) ^a	6-31G+(d,P)	6-31G(d,P) ^a	6-31G+(d,P)	Expt.[11]
F 1	-64.55(16.64)	-56.244(24.95)	-104.51 (23.32)	-97.88(16.69)	-81.19
F 3	-57.81 (23.38)	-50.932(30.26)	-94.48(13.28)	-89.66(8.47)	-81.19
F 4	-59.39 (21.8)	-51.313(29.88)	-97.34 (16.15)	-91.09(9.90)	-81.19
F 19	-98.79 (21.58)	-89.291(31.08)	-137.17 (16.80)	-127.59(7.22)	-120.37
F 20	-105.01 (15.36)	-92.391(27.98)	-143.74 (23.37)	-131.57(11.2)	-120.37

^a All values in ppm

Changes in values from the corresponding experimental are given in parentheses.

4.5 Thermodynamic properties

The calculated thermodynamic parameters are presented in table 6. Scale factors have been recommended [26] for an accurate prediction in determining the zero-point vibrational energies. The variation in the thermodynamic parameters seems to be insignificant.

Table 6. Calculated dipole moments (D. Mom), zero-point vibrational energy (ZPV) (kcal/mol), thermal energy (E thermal; kcal/mol) and Rotational constants (GHZ) for 2-(4-methyl-2-biphenyl)-4-amino-1, 2, 4-triazole-3-thiol definitions of theory levels

Theory levels	D. Mom	ZPV	E (Thermal)	Rotational constant		tants
HF/6-31G(d)	4.867	178.77	188.764	0.331	0.323	0.187
B3LYP/6-31G(d)	4.708	166.08	176.783	0.329	0.322	0.184

5. Conclusions

The results of the study lead to the following conclusions:

(i) The ground state geometries were optimized using the HF and B3LYP methods with the 6-31G (d), 6-31+G (d) basis set and geometries reported within the limits of accuracy of available experimental data. The bond lengths and angles calculated for title compound show quite good agreement with experimental values. The agreement for bond angles is not as good as that for the bond distances.(ii) The frequency assignments performed for the first time from FTIR and FT-Raman spectra recorded were for 2-(4-methyl-2-biphenyl)-4-amino-1,2,4-triazole-3-thiol.(iii) Mulliken charges of dacarbazine at different levels were calculated and the results discussed.(iv) calculated NMR chemical shifts and thermodynamic properties at HF and B3LYP/6-31G(d) levels of 2-(4-methyl-2-biphenyl)-4-amino-1, 2, 4-triazole-3-thiol were discussed and reported.

References

1. D. Chopra, T.N.G. Row, CrystEngComm. 10 (2008) 54.

2. P. Das, C.P. Spears, A.H. Shahinian, S.K. Dasgupta, N.G. Kundu, Bioorg. Med. Chem. Lett. 6 (1996) 2477.

3. M. Baba, E. De Clercq, H. Tanaka, M. Ubasawa, H. Takashima, K. Sekiya, I. Nitta, K. Umezu,

R.T. Walter, S. Mori, Mol. Pharmacol. 39 (1991) 805.

4. J. Balzarini, A. Karlsson, E. De Clercq, Mol. Pharmacol. 44 (1993) 694.

5. A. Mai, M. Artico, G. Sbardella, S. Quartarone, S. Massa, A.G. Loi, A. De Montis, F. Scintu, M. Putzolu, P. LaColla, J. Med. Chem. 40 (1997) 1447.

6. S. Prekupec, D. Makuc, J. Plavec, S. Kraljevic', M. Kralj, K. Pavelic', G. Andrei, R. Snoeck, J.

Balzarini, E. De Clercq, S. Raic'-Malic', M. Mintas, Antiviral Chem. Chemother. 16 (2005) 327.

7. S. Prekupec, D. Makuc, J. Plavec, L. Šuman, M. Kralj, K. Pavelic', J. Balzarini, E. De Clercq, M.

Mintas, S. Raic'-Malic', J. Med. Chem. 50 (2007) 3037.

8. P. Pospisil, D.B. Pilger, S. Marveggio, P. Schelling, C.Wurth, L. Scapozza, G. Folkers, M.

Pongrac'ic', M. Mintas, S. Raic'-Malic', Helv. Chim. Acta 85 (2002) 3237.

9. T. Kulikowski, Pharm. World Sci. 16 (1994) 127.

10. S. Raic´-Malic´, A. Johayem, S. Ametamey, S. Batinac, E. De Clercq, G. Folkers, L. Scapozza, Nucleosides Nucleotides Nucleic Acids 23 (2004) 1707.

11. A. Johayem, S. Raic´-Malic´, K. Lazzati, P.A. Schubiger, L. Scapozza, S.M. Ametamey, Chem. Biodiversity 3 (2006) 274.

12. J. Eary, D.A. Mankoff, A.M. Spence, M.S. Berger, A. Olshen, J. Link, F. O'Sullivan, K.A. Krohn,

دوازدهمین کنگرهملےسراسری مناوریهای نوین در حوزہ توسیعہ یایدارایران

12th National Congress of the New Technologies in Sustainable Development of Iran

Cancer Res. 59 (1999) 615.

13. D.A. Mankoff, A.F. Shields, J.M. Link, M.M. Graham, M. Muzi, L.M. Peterson, J.F. Eary, K.A. Krohn, J. Nucl. Med. 40 (1999) 614.

14. M. Begtrup, G. Boyer, P. Cabildo, C. Cativiela, R.M. Claramunt, J. Elguero, García, J.I. Toiron, P. Vedsø, Magn, Reson. Chem. 31 (1993) 107.

15. A.D. Becke, Density–Functional Thermochemistry 3. The Role of Exact Exchange, J. Chem. Phys. 98 (1993) 5648–5652.

16. C.T. Lee, W.E.Yang, R.G. Parr, Development of the Colle–Salvetti Correlation Energy Formula into a Functional of the Electron–Density Phys Rev. 37 (1988) 785–789.

17. P.C. Hariharan, J.A. Pople, Theor. Chim. Acta. 28 (1973) 213.

18. J.B. Foresman, E. Frisch, Exploring Chemistry with Electronic Structure Methods: A Guide to Using Gaussian, Gaussian Pitttsburg, PA, (1993).

19. GaussView, Version 3.07, R. Dennington, T. Keith, J. Millam, K. Eppinnett, W.L. Hovell, R. Gilliland, Semichem Inc, S K.S. hawnee Mission, (2003).

20. K. Wolinski, J.F. Hinton, P. Pulay, J. Am. Chem. Soc. 112 (1990) 8251.

21. M.J. Frisch et al., Gaussian 03, Revision B.4, Gaussian Inc., Pittsburgh PA, (2003).

22. S. Kristafor, T. Gazivoda, M. Cetina, D. Makuc, J. Plavec & S. Raic-Malic Synthesis and structural characterization of the C-6 fluoroalkylated pyrimidine derivatives, J. Mol. Struct. 923 (2009) 19-23.

23. "Harmonic Vibrational Frequencies: An Evaluation of Hartree-Fock, Møller-Plesset, Quadratic

Configuration Interaction, Density Functional Theory, and Semiempirical Scale Factors" A. P. Scott, L. Radom, J. Phys.Chem. 100 (1996) 16502-16513.

24. B. Lakshmaiah, G. R. Rao, J. Raman Spectrosc. 20 (1989) 439

25. G. E. Campagnaro, J. L. Wood, J. Mol. Struct. 6 (1970) 117-132.

26. N. L. Owen, R. E. Hester, Spectrochim. Acta A. 25 (1969) 343.

27. N. Sundaraganesan, K. S. Kumar, C. Meganathan, B. D. Joshua, Spectrochim Acta A. 65 (2006) 1186.

- 28. B. Lakshmaiah, G. R. Rao, Indian J. Pure & Appl. Phys. 29 (1991)370.
- 29. B. V. Reddy, G. R. Rao, Vib. Spectrosc. 6 (1994) 231.

30. V. A. Babu, B. Lakshmaiah, K. S. Ramulu, G. R. Rao, Indian J. Pure & Appl. Phys. 25 (1987) 58.

31. M. Silverstein, G. Clayton Basseler, C. Morill, Spectrometric Identification of Organic Compounds, Wiley, New York, (1981).

32. V. Krishnakumar, R. Ramasamy, Spectrochim. Acta A., 62 (2005)570.

33. T.A. Keiderling, P. J. Stephens. Chem. Phys. Lett. 41(1976) 46-48.

34. E. Castiglioni, F. Lebon, G. Longhi, S. Abbate, Enantiomer 7 (2002)161.

35. X. Cao, R.D. Shah, R.K. Dukor, C. Guo, T.B. Freedman, L.A. Nafie, Appl Spectrosc. 58 (2004) 1057.

36. J.R. Cheeseman, M.J. Frisch, F.J. Devlin, P.J. Stephens, Ab Initio Calculation of Atomic

Axial Tensors and Vibrational Rotational Strengths Using Density Functional Theory Chem. Phys. Lett. 252 (1996) 211.

37. R.S. Mulliken, J. Chem. Phys. 23 (1955) 1833.

38. A. Szabo, N.S. Ostlund, Modern Quantum Chemistry, Macmillan, New York. (1982).