

$\sigma\text{-}\mathrm{CONVEX}$ FUNCTIONS AND THEIR PROPERTIES

M. H. ALIZADEH¹*

Department of Mathematics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran. m.alizadeh@iasbs.ac.ir

ABSTRACT. We introduce and study the notion of σ -convex functions. We show that many well known properties of the convex function, namely Lipschitz property in the interior of its domain, remain valid for the large class of σ -convex functions.

1. INTRODUCTION

Suppose that X is a Banach Space with topological dual space X^* . We will denote by $\langle \cdot, \cdot \rangle : X \times X^* \to \mathbb{R}$ the duality pairing between X and X^* . Also we will denote by \mathbb{R}_+ the real nonnegative numbers.

Let T be a set-valued map from X to X^* . We recall that T is monotone if

$$\langle x - y, x^* - y^* \rangle \ge 0$$

for all $x, y \in X$ and $x^* \in T(x), y^* \in T(y)$.

The domain and graph of T are, respectively, defined by

$$D(T) = \{x \in X : T(x) \neq \emptyset\},\$$

gr
$$T = \{(x, x^*) \in X \times X^* : x \in D(T), \text{ and } x^* \in T(x)\}$$

For two multivalued operators T and S we write $T \subseteq S$ if S is an extension of T, i.e., gr $T \subseteq$ gr S. A monotone operator is called maximal monotone if it has no monotone extension other than itself. For the history of monotone operators see [4].

First we recall the following definition from [3, 5].

Definition 1.1. (i) Given an operator $T: X \to 2^{X^*}$ and a map $\sigma: D(T) \to \mathbb{R}_+$, T is said to be σ -monotone if for every $x, y \in D(T), x^* \in T(x)$ and $y^* \in T(y)$,

$$\langle x^* - y^*, \ x - y \rangle \ge -\min\{\sigma(x), \sigma(y)\} \|x - y\|.$$

$$(1.1)$$

²⁰¹⁰ Mathematics Subject Classification. 47H05, 47H04, 49J53, 46B10, 26A27, 26A48.

Key words and phrases. Convex functions, generalized convex functions, Lipschitz property.

^{*} Speaker.

M.H. ALIZADEH

(ii) A σ -monotone operator T is called *maximal* σ -monotone, if for every operator T' which is σ' -monotone with $\operatorname{gr} T \subseteq \operatorname{gr} T'$ and σ' an extension of σ , one has T = T'.

For more information about σ -monotonicity and maximal σ -monotonicity, we refer to the papers [1], [2],[3] and [5].

Note that when $\sigma(x) = \epsilon$, (ϵ is a constant positive real number) the definition of σ -monotonicity reduces to ϵ -monotonicity [6].

Let $f: X \to \mathbb{R} \cup \{+\infty\}$ be a function. Its domain (or effective domain) is defined by dom $f = \{x \in X : f(x) < +\infty\}$. The function f is called proper if dom $f \neq \emptyset$. In addition, f is said to be convex if for all $x, y \in X$ and for each $t \in [0, 1]$

$$f(tx + (1 - t)y) \le tf(x) + (1 - t)f(y).$$

Let $f: X \to \mathbb{R} \cup \{+\infty\}$ be a proper function. The subdifferential of f at $x \in \text{dom } f$ is defined by

$$\partial f\left(x\right) = \left\{x^{*} \in X^{*}: \left\langle x^{*}, y - x\right\rangle \leq f\left(y\right) - f\left(x\right) \qquad \forall y \in X\right\}$$

and $\partial f(x)$ is empty if x is not in the domain of f.

The notion of σ -convex function introduced in [2] and studied its relation with σ monotonicity. The notion of σ -convexity covers the concepts of ϵ -convexity [6, 7] and convexity. The convex functions are central to the study of Convex Analysis and Optimization.

2. Main results

We recall from [6] that a function $f : X \to \mathbb{R} \cup \{+\infty\}$ is ε -convex if it satisfies the following inequality for every $a, b \in X$, and $\lambda \in]0, 1[$

$$f(\lambda a + (1 - \lambda) b) \le \lambda f(a) + (1 - \lambda) f(b) + \lambda (1 - \lambda) \varepsilon ||a - b||.$$

In [7], Luc, Ngai and Thera presented several properties of ε -convex functions, and studied relationships between ϵ -convexity and ϵ -monotonicity. The connection between ϵ subdifferential and ϵ -monotonicity was investigated in [6] by Jofre, Luc and Thera. Also for a historical note about the ϵ -convexity and ϵ -monotonicity, we refer the reader to [6].

The notion of σ -convexity is introduced and studied in [2]. We recall it here:

Definition 2.1. Given a function $f : X \to \mathbb{R} \cup \{+\infty\}$ and a map σ form dom f to \mathbb{R}_+ , we say that f is σ -convex if

$$f(tx + (1-t)y) \le tf(x) + (1-t)f(y) + t(1-t)\min\{\sigma(x), \sigma(y)\}||x-y||$$
(2.1)

for all $x, y \in X$, and $t \in]0, 1[$.

A special case of σ -convex functions are the ε -convex functions: these are functions for which $\sigma(x) = \varepsilon \ge 0$ for all $x \in \text{dom } f$. There are σ -convex functions which are not ε -convex for any $\varepsilon \ge 0$, as shown in the following example, taken from [2].

Example 2.2. Consider the functions $\varphi, f, \sigma : \mathbb{R} \to \mathbb{R}$ defined by

$$\varphi(x) = \begin{cases} x \sin^2 x & \text{if } x \ge 0, \\ 0 & \text{if } x < 0, \end{cases}$$
$$\sigma(x) = \max\left\{\varphi(x), \max_{z \le x} \varphi(z) - \varphi(x)\right\}$$
$$f(x) = \int_0^x \varphi(t) dt.$$

It follows from Example 3.7 in [2] that f is σ -convex, but it is not ϵ -convex for any $\epsilon > 0$.

Note that if f is a σ -convex function, then dom f is a convex set. Some elementary properties of σ -convex functions are given below:

Proposition 2.3. (i) Suppose that f_1 and f_2 are σ_1 -convex and σ_2 -convex, respectively, with dom $f_1 \cap \text{dom} f_2 \neq \emptyset$ and $\alpha > 0$. Then $\alpha f_1 + f_2$ is $(\alpha \sigma_1 + \sigma_2)$ -convex.

(ii) If f is σ -convex and $\sigma \leq \sigma'$, then f is σ' -convex.

(iii) Let $f : X \to \mathbb{R} \cup \{+\infty\}$ be a function. Then f is σ -convex if and only if for all $x, y \in X$, and $t \in]0, 1[$,

$$f(tx + (1-t)y) \le tf(x) + (1-t)f(y) + t(1-t)\sigma(x)||x-y||$$
(2.2)

or equivalently,

 $f(tx + (1 - t)y) \le tf(x) + (1 - t)f(y) + t(1 - t)\sigma(y)||x - y||$

(iv) Let $f: X \to \mathbb{R} \cup \{+\infty\}$ be a function. Then f is convex if and only if it is σ -convex for every $\sigma : \text{dom } f \to \mathbb{R}_+$.

Given a function $f: X \to \mathbb{R} \cup \{+\infty\}$, we define the map $\sigma_f: \text{dom} f \to \mathbb{R}_+ \cup \{+\infty\}$ by

$$\sigma_{f}(x) = \inf\{a \in \mathbb{R}_{+} : \frac{f(tx + (1 - t)y) - tf(x) - (1 - t)f(y)}{t(1 - t)} \le a \|x - y\|, \forall y \in \operatorname{dom} f, t \in]0, 1[\}.$$

It should be noticed that if f is σ' -convex for some $\sigma' : \operatorname{dom} f \to \mathbb{R}_+$, then

$$\sigma_f = \inf \left\{ \sigma : f \text{ is } \sigma \text{-convex} \right\}.$$
(2.3)

In this case, σ_f is finite and f is σ_f -convex. Note that σ_f is the minimal σ such that f is σ -convex.

In the next proposition we give an explicit formula for σ_f .

Proposition 2.4. Suppose that f is σ -convex for some σ . Then

$$\sigma_f(x) = \max\left\{0, \sup_{t \in]0, 1[} \sup_{y \in \operatorname{dom} f \setminus \{x\}} \frac{f(tx + (1-t)y) - tf(x) - (1-t)f(y)}{t(1-t)\|x - y\|}\right\}.$$
 (2.4)

Proposition 2.5. Let $f : X \to \mathbb{R} \cup \{+\infty\}$ be a function. Then σ_f is finite and f is σ_f -convex if and only if f is σ -convex for some σ .

M.H. ALIZADEH

Remark 2.6. Let $\{f_i\}_{i \in I}$ be an arbitrary family of σ -convex functions. If $f(x) = \sup_{i \in I} f_i(x)$, $x \in X$, then f is σ -convex. Indeed, for $x, y \in X$ and $t \in]0, 1[$ we have

$$f_i(tx + (1-t)) y \le tf_i(x) + (1-t) f_i(y) + t(1-t) \min \{\sigma(x), \sigma(y)\} ||x-y|| \le tf(x) + (1-t) f(y) + t(1-t) \min \{\sigma(x), \sigma(y)\} ||x-y||.$$

Taking the supremum over $i \in I$ implies σ -convexity of f.

Lemma 2.7. Let $f : X \to \mathbb{R} \cup \{+\infty\}$ be a proper, σ -convex function. Assume that either X is finite-dimensional, or that f is lsc and X is a Banach space. Then f is locally bounded from above in the interior of its domain.

Lemma 2.8. Let $f : X \to \mathbb{R} \cup \{+\infty\}$ be a σ -convex function. Assume that f is bounded from above in a neighborhood of some point x_0 . Then f is locally bounded from above in the interior of its domain.

We introduce the following assumption:

Property B: We say that the function σ has the property B, if for every $x \in \text{int dom } f$ and every $\varepsilon > 0$ sufficiently small, σ is bounded on the sphere $S(x, \varepsilon) = \{y \in X : ||x - y|| = \varepsilon\}.$

Note that this assumption is weaker than assuming that σ is locally bounded. For example, the function σ such that $\sigma(x) = 1/||x||$ for $x \neq 0$ and $\sigma(0) = 1$, satisfies property B without being locally bounded.

Theorem 2.9. Let $f : X \to \mathbb{R} \cup \{+\infty\}$ be a σ -convex function. Assume that f is locally bounded from above in the interior of its domain. If σ satisfies property B, then f is locally Lipschitz in the interior of its domain.

Corollary 2.10. Every proper, σ -convex function $f : \mathbb{R} \to \mathbb{R} \cup \{+\infty\}$ is locally Lipschitz in the interior of its domain.

Proposition 2.11. Suppose that $f : I \to \mathbb{R}$ and $\sigma : I \to \mathbb{R}_+$ is a map. Then the following statements are equivalent:

(i) f is σ -convex; (ii) For $s, t, u \in I$ with a < s < t < u < b,

$$\frac{f\left(t\right) - f\left(s\right)}{t - s} \le \frac{f\left(u\right) - f\left(t\right)}{u - t} + \min\left\{\sigma\left(s\right), \sigma\left(u\right)\right\}.$$
(2.5)

References

- 1. M.H. Alizadeh, *Fitzpatrick function for generalized monotone operators*, Journal of Nonlinear and Convex Analysis . (to appear).
- M.H. Alizadeh, M. Roohi Some results on pre-monotone operators, Bulletin of Iranian mathematical society 43 (2017) 2085-2097.
- M.H. Alizadeh, N. Hadjisavvas, M. Roohi, Local boundedness properties for generalized monotone operators, J. Convex Anal. 19 (2012) 49–61.
- 4. J.M. Borwein, Fifty years of maximal monotonicity. Optim. Lett. 4 (2010) 473-490.

- 5. A.N. Iusem, G. Kassay, W. Sosa, An existence result for equilibrium problems with some surjectivity consequences, J. Convex Anal. 16 (2009) 807–826.
- 6. A. Jofre, D.T. Luc, M. Thera, ϵ -subdifferential and ϵ -monotonicity, Nonlinear Anal. 33 (1998) 7190.
- D.T. Luc, H.V. Ngai, M. Thera, On ε-monotonicity and ε-convexity, in: A. Ioffe et al. (eds.), Calculus of Variations and Differential Equations (Haifa, 1998), Res. Notes Math. Ser. 410, Chapman & Hall, Boca Raton (1999) 82–100.
- 8. Z. Pales, On approximately convex functions. Proc. Am. Math. Soc., 131, (2003), 243-252.