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ABSTRACT. We introduce and study the notion of o-convex functions. We show that many
well known properties of the convex function, namely Lipschitz property in the interior of
its domain, remain valid for the large class of o-convex functions.

1. INTRODUCTION

Suppose that X is a Banach Space with topological dual space X*. We will denote by
(-,-) : X x X* — R the duality pairing between X and X*. Also we will denote by R,
the real nonnegative numbers.

Let T be a set-valued map from X to X*. We recall that 7" is monotone if

(x —y,x" —y") >0
for all z,y € X and 2* € T (x),y* € T (y).
The domain and graph of T" are, respectively, defined by
D(T)={xe X :T(z)#0},
grT ={(z,2") e X x X" :xe€e D(T), and 2" € T (2)} .
For two multivalued operators 1" and S we write T" C S if S is an extension of T, i.e.,
gr’l” C grS. A monotone operator is called maximal monotone if it has no monotone

extension other than itself. For the history of monotone operators see [1].
First we recall the following definition from [3, 5].

Definition 1.1. (i) Given an operator T : X — 2% and a map o : D(T) — R, T is said
to be o-monotone if for every x,y € D(T), * € T (z) and y* € T (y),

(" =y w—y) > —min{o(z),0(y)}x -yl (1.1)
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(ii) A o-monotone operator T' is called mazimal o-monotone, if for every operator T"
which is ¢’-monotone with grT C gr7” and ¢’ an extension of o, one has T' = T".

For more information about o-monotonicity and maximal o-monotonicity, we refer to
the papers [1], [2],[3] and [5].

Note that when o (x) = €, (€ is a constant positive real number) the definition of o-
monotonicity reduces to e-monotonicity [0].

Let f: X — RU{+o0} be a function. Its domain (or effective domain) is defined by
dom f ={z € X : f(x) < 400}. The function f is called proper if dom f # ). In addition,
f is said to be convex if for all z,y € X and for each ¢ €]0, 1]

flz+ 1 —=t)y) <tf(x)+ (1 —1)f(y).

Let f: X — RU {400} be a proper function. The subdifferential of f at x € dom f is
defined by

Of () ={a" e X*: @y —a) < fy) = f(x)  VyeX}
and Of (x) is empty if x is not in the domain of f.
The notion of o-convex function introduced in [2] and studied its relation with o-
monotonicity. The notion of o-convexity covers the concepts of e-convexity [0, 7] and

convexity. The convex functions are central to the study of Convex Analysis and Opti-
mization.

2. MAIN RESULTS

We recall from [0] that a function f : X — R U {400} is e-convex if it satisfies the
following inequality for every a,b € X, and A €]0, 1]

fRat (1 =2b) <Af(a) + (1 =X F () + A1 =A)ella = b]].

In [7], Luc, Ngai and Thera presented several properties of e-convex functions, and stud-

ied relationships between e-convexity and e-monotonicity. The connection between e-

subdifferential and e-monotonicity was investigated in [6] by Jofre, Luc and Thera. Also

for a historical note about the e-convexity and e-monotonicity, we refer the reader to [0].
The notion of o-convexity is introduced and studied in [2]. We recall it here:

Definition 2.1. Given a function f: X — RU {400} and a map o form dom f to R, , we
say that f is o-convex if

flr+ (1 =)y) <tf(x)+ A=) f(y)+t(1—t)min{o (z),0 W)}z -yl  (2.1)
for all z,y € X, and ¢ €]0, 1[.

A special case of o-convex functions are the e-convex functions: these are functions for
which o(z) =€ > 0 for all x € dom f. There are o-convex functions which are not e-convex
for any € > 0, as shown in the following example, taken from [2].
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Example 2.2. Consider the functions ¢, f,0 : R — R defined by

{a:sian if x>0,

pla) = 0 if 2<0,

o (r) = max {cp () maxp(2) — ¢ (w)}
Fo) = [ ot

It follows from Example 3.7 in [2] that f is o-convex, but it is not e-convex for any € > 0.

Note that if f is a o-convex function, then dom f is a convex set.
Some elementary properties of o-convex functions are given below:

Proposition 2.3. (i) Suppose that f1 and fy are o1-conver and oq-converz, respectively,
with dom f1 Ndom fo # 0 and o > 0. Then af; + fo is (aoy + 03)-conver.
(i) If f is o-conver and o < o', then f is o'-conver.
(i) Let f : X — RU {400} be a function. Then f is o-convex if and only if for all
z,y € X, and t €]0,1],
flo+ A=ty <tf(x)+ L —-1)f(y)+tQ—t)o(z)|lz -yl (2.2)

or equivalently,
flle+ @ =t)y) <tf(@)+ A —=1)f(y)+tA—1t)o )|z —yl

(i) Let f: X — RU{+o0} be a function. Then f is convex if and only if it is o-convex
for every o : dom f — R,..

Given a function f : X — R U {400}, we define the map o, : dom f — R, U {400} by
fle+A-t)y) —tf(z) -1 -1)f(y)

t(1—1)

< allz -yl Yy € dom f,t €0, 1]}

It should be noticed that if f is o’-convex for some ¢’ : dom f — R, then

of(r) =inf{a e Ry :

or =inf{o : f is o-convex} . (2.3)

In this case, oy is finite and f is oy-convex. Note that oy is the minimal o such that f is
0-CONvex.
In the next proposition we give an explicit formula for oy.

Proposition 2.4. Suppose that f is o-convex for some o. Then

or(r) = max su su f(tx—i_(l_t)y)_tf($)_(1_t)f(y)
o {O’te]oﬁ[yedom?\{m} (10—l } (24)

Proposition 2.5. Let f : X — RU {400} be a function. Then oy is finite and f is
o-convex if and only if f is o-convex for some o.
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Remark 2.6. Let { f;},.; be an arbitrary family of o-convex functions. If f(x) = sup,c; fi(z),
x € X then f is o-convex. Indeed, for z,y € X and ¢ €]0, 1] we have

filtr + (L =t)y <tfi(x) + (1 =1) fi(y) +t (1 —t)min{o (z),0 ()} |z - yll
<tf(e)+ (1=t f(y)+t(d—t)min{o(z),0 @)}z -yl
Taking the supremum over ¢ € I implies o-convexity of f.

Lemma 2.7. Let f: X — RU{+oc} be a proper, o-convex function. Assume that either
X is finite-dimensional, or that f is Isc and X is a Banach space. Then f s locally bounded
from above in the interior of its domain.

Lemma 2.8. Let f : X — RU {400} be a o-convex function. Assume that f is bounded
from above in a neighborhood of some point xy. Then f is locally bounded from above in
the interior of its domain.

We introduce the following assumption:

Property B: We say that the function o has the property B, if for every x € int dom f
and every ¢ > 0 sufficiently small, o is bounded on the sphere
S(re) ={ye X : |z —y| =<}
Note that this assumption is weaker than assuming that o is locally bounded. For
example, the function o such that o (x) = 1/ ||z|| for  # 0 and ¢(0) = 1, satisfies property
B without being locally bounded.

Theorem 2.9. Let f: X — RU {+o0} be a o-convex function. Assume that f is locally
bounded from above in the interior of its domain. If o satisfies property B, then f is locally
Lipschitz in the interior of its domain.

Corollary 2.10. Every proper, o-convex function f : R — R U {+oo} is locally Lipschitz
in the interior of its domain.

Proposition 2.11. Suppose that f: I — R and o : I — Ry is a map. Then the following
statements are equivalent:

(i) f is o-conver;

(ii) For s,t,u € I witha < s <t <u <b,

fFO=f(s) _ flw) =)

t—s - u—t

+min{o(s),o(u)}. (2.5)
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