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ABSTRACT. This article by approximate endpoint property, describes a technique for ex-
isting of solutions of the fractional g-differential inclusion with boundary value conditions
on multifunctions. For to do this, we use an approximate endpoint result on multifunc-
tions. Also, we give an example to elaborate our results and to present the obtained results
by fractional calculus.

1. INTRODUCTION

Fractional calculus and g-calculus are one of the significant branches in mathematical
analysis. In 1910, the subject of g-difference equations introduce by Jackson [6]. In this
paper, we are working to stretch out the problem in a sense for the fractional g-differential
inclusion problem:

“Dyu(t) € T (t,u(t), u'(t),u"()), (1.1)
with integral boundary conditions:

w(0) + u(p) +u(l) = [ fo(s, u(s)) ds,
*DEu(0) + *Du(p) + DEu(1) = [} fi(s, u(s))ds, (1.2)
¢Dju(0) + “DJu(p) + “Dju(l) = fo fa(s,u(s))ds,

where a € (2,3], 0 < ¢q,p, < 1,7 € (1,2), fi: JXxR — R, here i = 1,2, 3, are continuous
functions, T: J x R* — P, (R) is a multifunction and “D? is the fractional Caputo type
g-derivative for ¢ € J = [0, 1]. The set of all compact subsets of R denote by P.,(R).
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2. PRELIMINARIES

1
n € Ny is (a—b)g") = TI}=i(a—bg*) and (a—b)go) = 1 wherea,b € Rand Ny :={0,1,2,...}.
Also, for & € R and a # 0, we have (a—b)\ = a® [Teeo(a—bg")/(a—bg*™*). It b = 0, then it
is clear that a(® = a®. The q-Gamma function is given by [',(z) = (1 — )@Y /(1 — ¢)*7 1,
where x € R\{0,—1,—2,---} [6]. Note that, I'y(x + 1) = [z],[;(z). The value of g-
Gamma function, I',(z), for input values ¢ and = with counting the number of sentences
n in summation by simplifying analysis. The g-derivative of function f, is defined by
(Dgf)(x) = (f(x) = flgz))/((1 = ¢)x) and (Dyf)(0) = limgo(Dyf)(x) [1]. Also, the
higher order g-derivative of a function f is defined by (D} f)(x) = Dy(Dp~" f)(x) for all

Assume that ¢ € (0,1) and a € R. Define [a], = % [6]. The power function (a—b); with

n > 1, where (D)f)(z) = f(z) [1]. The g-integral of a function f defined on [0,5] is
define by I,f(x) = fox f(s)dys = x(1 = q) Y5y q" f(2q"), for 0 < x < b, provided that
the sum converges absolutely [I]. If a € [0,b], then fabf(u)dqu = I,f(b) — I,f(a) =

(1 —q) > pod" [bf(bg") — af(ag®)], whenever the series exists. The operator I7 is given
by (I f)(x) = f(z) and (I} f)(x) = (I;(I}~" f))(z) for all n > 1 [1]. It has been proved that
(Dy(1,f))(z) = f(x) and (I,(D,f))(z) = f(x) — f(0) whenever f is continuous at x = 0
[1]. The fractional Riemann-Liouville type g-integral of the function f on [0,1], of &« > 0 is
given by (IDf)(t) = f(t) and (I3 f)(t) = % [5(t—gs) @V f(s)dys, for t € [0,1] and o > 0
[1]. Also, the fractional Caputo type g-derivative of the function f is given by (CD(‘;‘ f ) (t) =
m INGS gs) == (Dl £Y(s)d,s, for t € J and @ > 0 [1]. It has been proved that
(U F)(x) = U5 f)(), and (DRIZH)) () = f(z), where a,8 = 0 [1. We say a
multifunction G : J — P,(R) is measurable whenever for each real number y, the function
t — d(y, G(t)) is measurable [3]. The Pompeiu-Hausdorff metric Hy: 2% x2%X — [0, 00) on a
metric space (X, p) is defined by, H,(A, B) = max {sup,c4 p(a, B),sup,cp p(A,b)}, where
p(A,b) = infueq p(a,b) [5]. Denote the set of closed and bounded and the set of closed
subsets of X by CB(X) and C(X), respectively. In this case (CB(X), H,), (C(X),H,)
are a metric space, a generalized metric space, respectively. An element z € X is called
an endpoint of multifunction 7' : X — 2% whenever Tz = {2} [2]. Also, multifunction
T has approximate endpoint property whenever inf,ex sup,er, p(,y) = 0 [2]. A function
6 : R — R is called upper semi-continuous whenever limsup,,_,. 6(A,) < 6(\) for all
sequence {\, }n>1 with A, — X [2].

3. MAIN RESULTS

Lemma 3.1. Suppose that v € C(J,R), a € (2,3], 0 < B,¢,p < 1, v € (1,2) and
fi o JXR — R, here i = 0,1,2, be continuous functions. The unique solution of the
fractional q-differential problem

“Dyu(t) = v(t), (3.1)
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with conditions (1.2) is given by
u(t) = I90(t) + é /01 Fols, u(s)) ds — % [190(1) + IS0(p)] + a1 (£) /01 Fi(s, u(s)) ds
T ax(t) [13*%(1) T Igfﬁv(p)} 1 (b1 + as(t)) /01 g2(s,u(s)) ds + (ba + as(®)) 18 To(1) + 19 V()] ,  (3.2)
_ BCoB) IR gy T (3-) 8Tyt

3(pt=F+1) ’ 3(p'F+1) ’
—6(° P + 0B =2 = B)t  3(p'F + 13 —1)Ty(3 — B)t

where a(t)

50 = T (2 F DB =F) | 6T P+ ) + DB =)
as(t) = 6(p2# + D3 —yTq(2 - B)t _ 3Lq(3 —7)Tq(3 — B)(p' P + 1)t2
TS P )P T+ DIGB—B)  6( P+ (> 7 + DT3B —B) 33)
b= 20+ VPP H DB -T2 B) (PP + DT =)' 7 + D3 - ) '
YT+ (P + )3 - ) 6(p1 P+ (P27 + )T, —B)
p — PFULB =N+ DB —6) 2+ V0?7 + 1B = 1)l(2— 5)
T P A D + D3 - B) 6(p1 7 + (27 + DT3B —B)

Assume that X = CQ(J) endowed with the norm |ju|| = sup, ; |u(t)|+sup,c s |/ ()| +sup,c s [u” (t)].
Then (X, ||.]|) is a Banach space. For u € X, we define the selection set Sz, by the set of
all v € L'(J) somehow that v(t) € T(t,u(t),u/'(t),u"(t)) for all t €€ J. For the study of
problem (1.1) and (1.2), we shall consider the following conditions.

(C1) The multifunction 7' : J x R* — P.,(R) be an integrable bounded such that
T(.,x1,29,23) : J = P.y(R) is measurable for all z; € R;

(C2) The functions f; : J x R — R be continuous and map 6 : [0,00) — [0,00) be a
nondecreasing upper semi-continuous such that iminf; . (t—60(¢)) > 0 and 6(t) < ¢
for all t > 0;

(C3) There exist m, mg, my,ms € C(J,[0,00)) such that Hu(T(t,z1,22,23), T(t,z}, ah,2%)) <
(MO -y o — i)/ (A1 + A2 + As), and |f;(t,@) — f;(t,2")] < (my()e(|je —2'])) /(Ar + Az + As),
forall t € J, z, 2, z;, 2, € R, where

[_lImlleo lmolloo | 2lmllc | 5Lq(2 = Blimillec | 10T4¢(2 — B)lImlleo

[ T(a+1) 3 3Tg(a+1) 3 BLg(a—B+1)

L3 =) (Im2flcTq(a =y +1) + 2Hm||oo)) ]7
3T4(3 — A)lqla —7 + 1)
) (Fq(3 — ) (Imafloclg(e =y +1) + 2||m||oo))} ’
F@B—-ple(a—~v+1)

Ay =

+10(2¢(2 = B) + q(3 — B)) (

_[limllee | 2T¢(2 = B)Im|loo B )
he = L Tg(cx) - qu(a—ﬁ+1) + (20g(2 - 8) + T4(3 - 8)

As — [ [Imloo n Fq(3*’v)(IImzHoqu(a*7+1)+2IIMHO<3)} _
[Tg(a—1) Pgla—y+1) ’

(C4) Multifunction N : X — 2% is given by N(u) = {h € X |3 v € S : h(t) = w(t)}, for each
t € J, where by applying the notation in (3.3), we have

1 1
w(t) = I%o(t) + %/0 Fo(s, u(s))ds — % [120(1) + I90(p)] + al(t)/o F1(s,u(s))ds
+ a2(t) [I;’“%(U + I?_Bv(p)] + (b1 + a3 (t)) /01 f2(s,u(s))ds + (b2 + aa(t) [Ig T v(1) + 187 Tv(p)] -

Theorem 3.2. The boundary value q-differential inclusion problem (1.1) and (1.2) has a
solution, whenever the multifunction N : X — P(X) has the approzimate endpoint property
and consitions (C1)-(C4) are hold.
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Example 3.3. Consider the fractional g-differential inclusion problem

cpi 2 1 / 1 [u”(t)]
D¢ u(t) € |0, 100 sinu(t) + Tog “5 ¥ t) + 100 (m)} , (3.4)
with the integral boundary conditions
u(0 ) + u( )+ u(l) o 2?)Zcos u(s)ds, ,
cDd (0) +CD3u( )+ CDJ (1) = 01 9,2(),1 cosu(s)ds, (3.5)
CDS(m+0D%4) D u(l) = 252 cosu(s)ds

where t € J = [0, 1], « B=2y=2andp=>2 in equations (1.1) and (1.2). We define

47
maps T : J x R* — P(R) by T(t,xl,xg,xg) = [0, £ Lo sinwy 4 s cos o + 100(1‘f|‘";‘3|)], Also,
fi + J xR — R define by fo(t,z) = & > cosz, fi(t,xz) = %Cosx fat,x) = 23'50&1 cos T,

and N : CQ(J) — 29°U) by N(u) = {h € C2(J) |30 € Sr ) = w(v), for all t € J such
that w(t) :Iq“ t)+ = f 2 55 cos u( als—f[l4 (1 )+I4 ()] +ai(t) fo cosu(s)ds—i—ag( )[anv(l)—i—lq}zv(i)]
o+ as(0) ) B conals)ds +0n + as@Fo(1) + o3 where ai(t), ax(t), as(t), aa(t), by
and by are calculated by (3.3). Put m(t) = 3L, mo(t) = &, ma(t) = et;;l, mo(t) = 2;;8;1
and t(t) = . In accordance with data of Table (1) In the article source file, it is easy to
check that Hd(T(t uy, g, us), F(t, v1,v2,v3)) < (m(t)0(Xs_, [ur—vk|)) /(A4 Ay +As), and
|fi(t,u)—f(t,v)| < A1+A—2+A3mj( JY(Ju—vl|), fort € J, j = 0,1,2. Because sup,¢ (o) |[ull =
0, we have inf,cc2(s) (Supyen(y [l — v|]) = 0. Thus, N has the approximate endpoint
property. At present, by applying Theorem 3.2, the system of fractional g-differential
inclusions (3.4) and (3.5) has at least one solution.
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