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Abstract. In this paper, we consider the fractional optimal control problems (FOCPs)
with variable fractional order derivatives. The time and space derivatives are replaced by
the variable-order Caputo fractional derivatives. An excellent numerical method based on
the spectral collocation method for the solutions are proposed. The proposed method is an
indirect approach since we act on the equivalent Volterra integral equation of the second
kind. Unconditional stability and a special case convergence of the proposed method are
proved by the mathematical induction. Some numerical examples are given to support our
theoretical analysis.

1. Introduction

Optimal control theory is a branch of optimization theory focused on minimizing a cost
or maximizing a payoff. The fractional optimal control theory is a relatively new area in
mathematics and engineering disciplines. FOCPs can be defined using different definitions
of fractional derivatives, like the Riemann-Liouville and Caputo fractional derivatives as
the most important ones. The authors in [1] have investigated the necessary conditions for
optimization of FOCPs. Since the order of fractional derivatives and integrals may take any
arbitrary value, another extension is considering the order not to be constant. This provides
an extension of the classical fractional calculus, namely variable-order fractional calculus.
Recently, several researchers have investigated and shown that many complex physical
models can be described via variable order fractional derivatives with a great success. In
a similar manner, variable order fractional optimal control problems (VO-FOCPs) can be
defined with respect to different definitions of variable order fractional derivatives like the
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Riemann-Liouville and Caputo derivatives as the most important ones. Some recent works
on VO-FOCPs can be found in [2, 3].
In this paper, we solve this problem by introducing and analyzing a Jacobi spectral

collocation method for the following VO-FOCP:

min J(u) =

∫ 1

0

F (t, x(t), u(t))dt, (1.1)

with the variable order fractional dynamical system:

C
0 D

α(t)
t x(t) = G(t, x(t), u(t)), 0 < α(t) ≤ 1, t ∈ [0, 1], (1.2)

and the initial condition:

x(0) = x0, (1.3)

where F and G are smooth functions and C
0 D

α(t)
t denotes the variable order fractional

derivative of x(t) of order α(t) in the Caputo sense, which will be given through the following
definitions.

Definition 1.1. The Riemann-Liouville variable order fractional integral operator of order
α(t) ≥ 0 of a function f(t) defined by:

t0I
α(t)
t f(t) =

1

Γ(α(t))

∫ t

t0

(t− s)α(t)−1f(s)ds (1.4)

Definition 1.2. The left and right Riemann-Liouville variable order fractional derivatives
of f(t) for n− 1 < α(t) ≤ n are as follows:

RL
t0

D
α(t)
t f(t) =

1

Γ(n− α(t))

dn

dtn

∫ t

t0

(t− s)n−α(t)−1f(s)ds, (1.5)

and

RL
t D

α(t)
tf

f(t) =
(−1)n

Γ(n− α(t))

dn

dtn

∫ tf

t

(s− t)n−α(t)−1f(s)ds, (1.6)

respectively.

Definition 1.3. The left and right Caputo variable order fractional derivatives of f(t) for
n− 1 < α(t) ≤ n are defined respectively by:

C
t0
D

α(t)
t f(t) =

1

Γ(n− α(t))

∫ t

t0

(t− s)n−α(t)−1f (n)(s)ds, (1.7)

and

C
t D

α(t)
tf

f(t) =
(−1)n

Γ(n− α(t))

∫ tf

t

(s− t)n−α(t)−1f (n)(s)ds. (1.8)

The proposed method consists of reducing the VO-FOCP in Eq.(1.1) and the VO-
fractional dynamical system in Eqs. (1.2)-(1.3) to a system of nonlinear Volterra integral
quations which can be simply solved. To this end, in the next section, this VO-FOCP is
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transformed into an equivalent system of Volterra integral equations. In Section 3, the spec-
tral Jacobi collocation method is described. Extensive numerical experiments are provided
in Section 4 to confirm our theoretical results.

2. Setting the problem

The first-order optimality conditions of VO-FOCP (1.1)-(1.3) are:

C
0 D

α(t)
t x(t) = ∂λH(t, x(t), u(t), λ(t)), x(0) = x0 (2.1)

RL
t D

α(t)
1 λ(t) = ∂xH(t, x(t), u(t), λ(t)), λ(0) = 0 (2.2)

0 = ∂uH(t, x(t), u(t), λ(t)), (2.3)

where H(t, x(t), u(t), λ(t)) = F (t, x(t), u(t)) + λ(t)G(t, x(t), u(t)) is the Hamiltonian func-
tion and λ(.) is a Lagrange multiplier vector. By computing u(t) from ∂uH(t, x(t), u(t), λ(t)) =
0 and applying the fundamental theorem of fractional calculus, we get the following equiv-
alent Volterra integral equations:

x(t) = x0 +
1

Γ(α(t))

∫ t

0

∂λH(τ, x(τ), λ(τ))(t− τ)α(t)−1dτ, (2.4)

λ(t) =
1

Γ(α(t))

∫ 1

t

∂xH(τ, x(τ), λ(τ))(τ − t)α(t)−1dτ.

Theorem 2.1. Let the function H be continuous and satisfies a Lipschitz condition with
respect to the second variable with some constant L > 0. Then, the Volterra Eqs. (2.4)
possesses a uniquely determined solution (x, λ) ∈ C1[0, 1] [4].

3. The Jacobi spectral collocation scheme

In this section, the above firstorderoptimalitycondition is approximated byusinga frac-
tional spectral collocation method based on the Jacobi polynomials. For the state Eq.(2.4),
we approximate the state x(t) and costate λ(t) by

x(t) ∼= xN(t) =
N∑
i=0

xiJi(t), λ(t) ∼= λN(t) =
N∑
j=0

λjJj(t), (3.1)

where Jp(t), p = 0, 1, · · · , N , are the fractional Jacobi polynomials of degree p which are
orthogonal polynomials with the weight (1 − t)δtγ, δ, γ > −1 [5]. Also, the derivative of
fractional Jacobi polynomials are orthogonal fractional polynomials. The above expansion
can also be alternatively expressed as

xN(t) =
N∑
i=0

xN(ti)Ji(t), λN(t) =
N∑
j=0

λN(tj)Jj(t), (3.2)
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where tp, p = 0, 1, · · · , N , are interpolation points that we consider Legendre-Gauss points
as the interpolation points. Then by (3.2) and (2.4), a direct computation leads to:

xN(t) = x0 +
1

Γ(α(t))

∫ t

0

∂λH(τ, xN(τ), λN(τ))(t− τ)α(t)−1dτ, (3.3)

λN(t) =
1

Γ(α(t))

∫ 1

t

∂xH(τ, xN(τ), λN(τ))(τ − t)α(t)−1dτ. (3.4)

The system (3.3) can be solved by an iterative process (e.g., the Newton-Raphson iteration
method or the successive substitution method).

4. Numerical Example

Consider the following VO-FOCP:

J(u) =
1

2

∫ 1

0

(
x2(t) + u2(t)

)
dt,

C
0 D

α(t)
t = −x(t) + u(t), 0 < α(t) ≤ 1,

with x(0) = 1. To validate the accuracy of the achieved results, see Table 1.

Table 1. Optimal cost for the estimated value of J at different choices of α(t)

α(t) [5] [6] N = 100 N = 200 N = 400
1− 0.2t 0.16711 0.167347 0.167127 0.167119 0.167112
1− 0.1t 0.17953 0.179690 0.179548 0.179540 0.179534

1 0.192909 0.192909 0.192909 0.192909 0.192909
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