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ABSTRACT. Variable-order differential operators can be employed as a powerful tool to
modeling fractional differential equations (FDEs) and chaotical systems. In this paper,
we consider the FDEs with variable fractional order derivatives. The time and space
derivatives are replaced by the variable-order Caputo fractional derivatives. An excellent
numerical method based on the spectral method for the solutions are proposed. The
numerical schemes are based on the fundamental theorem of fractional calculus and the
Lagrange polynomial interpolation. The obtained numerical results are an indication of
the behavior of the results.

1. INTRODUCTION

Fractional calculus allows the operators of integration and differentiation to have frac-
tional order. Fractional-order differential equations can be used to model many physical
systems with more accuracy in relation to the integer-order equations due to their non-local
properties. Hence, they have been further discussed and applied in the last few decades. An
interesting extension of the constant order fractional calculus was proposed named variable-
order fractional calculus [3]. Since it is not possible to find exact solutions of variable-order
fractional differential equations (VO-FDEs), the developing numerical schemes for solving
these equations is an important area of inquiry. Recently, spectral methods have been
applied to FDESs, offering the benefit of more natural nonlocal approximations in addition
to high accuracy in the case of smooth solutions [2, 1, 5]. Also, the pseudospectral method
is one of the most popular direct methods which has been applied by many researchers [0].
The aim of this paper is to use the pseudospectral method with special fractional powers
in which the use of these functions is important because we can obtain accurate solutions
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with a few number of Lagrange functions. We contribute to these methods by introducing
and analyzing a Lagrange functions for the following rational-order fractional initial value
problem:

§DVa(t) = f(t, (1)), 2(0) = o, (1.1)

™ is the Caputo fractional derivative of variable-

where f is a continuous function and § D}’
order defined in the next.

The paper is organized as follows. Notations and basic definitions of variable-order
fractional derivatives are given in Section 2. In Section 3 the novel variable-order numerical
method with Lagrange functions is presented. Furthermore, some illustrative examples are

given in Section 4.

2. PRELIMINARIES

In this section, we provide basic definitions of variable-order fractional derivatives which
are used in the subsequent sections [1].

Definition 2.1. The Riemann-Liouville variable order fractional integral operator of order
a(t) > 0 of a function f(t) defined by:

a(t) _ 1 ! — )1 £\ ds
W10 = rgy L -9 e 2.1)

Definition 2.2. The left and right Riemann-Liouville variable order fractional derivatives
of f(t) for n —1 < a(t) < n are as follows:

alt 1 dn ! n—a(t)—
tRoLDt()f(t) = mﬁ/ﬁoﬁ— s)" W7 f(s)ds, (2:2)
and
RLDa(t)f(t) — iﬁ /tf<$ _ t)n—oz(t)—lf(s)ds (2 3)
¢ Dy, T(n— a(t) dt" J, ’ '
respectively.

Definition 2.3. The left and right Caputo variable order fractional derivatives of f(t) for
n —1 < a(t) < n are defined respectively by:

1

¢ pot) =" t — s)n =L () ds .
S0 = gy L0 O s (2.4

and

EDLY ) = oy [ 0O s 25)
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3. FORMULATION OF PSEUDOSPECTRAL METHOD

Consider the set of {t; §V:_01 of zeros of Jacobi polynomials {J%"} with parameters a = 0,
b=—1+1< on[0,1]. The jth Lagrange polynomial, L;(t), of order N — 1 is defined by

N—

t—1; .
Lit)=]];— =01 N-1
. 7 7

7=

—_

We make the change of variable ¢ = 7® and obtain the jth fractional power Lagrange
function defined by

Lo(t) = ook 1, N—1
J(t)_ H t_t7 ]—O, s T — 1.
i=0,i£j 7 v

It is worth noting that these functions preserve the orthogonal property of Lagrange poly-
nomials. Then, we approximate the state variables x(7) by fractional power Lagrange
functions of degree at most N as follows:

N-1

o(r) Zan(r) =Y an(m)L§(r), j=0,1,--- ,N-L (3.1)

j=0

Now, we obtain the fractional differentiation matrix at the collocation points {7;}1;' as

N-1
oDRVan (Tlrar, = 3 () DT (3.2)
=0

where Dg(”) denotes the ijth entry of the fractional differentiation matrix as follows:

1 N-—1 k
D™ = = ey Y din (") (3.3)
J k=0 m=0
where
. (—D)F"T(1+b+ kT (1+a+b+k+m)IT(ma +a; +1)
T (k= m)ID(L+ b+ m)T (1 + a+ b+ k)L(ma; + 1)
2&1' + 1
Cij = ———w; Li(75; i)
ai2°‘i

in which a; = a(r;) and L,(t; ) expressed the Muntz-Legendre polynomials. In this
framework, this scheme is directly considered to obtain a numerical solution of the system

(1.1).
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4. NUMERICAL EXAMPLE

Consider the following VO-FDE:
C nat) _ 2 2—a(t) 1 1—af(t) 2
5 ) R a— S — 22—t telol],
0 &t W+ TEam re—a@ 0,1]

with 2(0) = 1. The exact solution is z(t) = t* — t. To validate the accuracy of the achived
results, see Table 1.

TABLE 1. Absolut errors at different values of «(t) and N

aft) N=5 N=7 N =10
1—0.01f 6.875x 105 8.580 x 10-11 1.052 x 10~
0.95  3.657x 10711 1.173 x 10712 4.319 x 101
1 258 x 1071 2,639 x 10~13 1.833 x 10~

5. CONCLUSIONS

A numerical scheme based on Lagrange polynomial interpolation and the fundamental
theorem of fractional calculus was proposed to get a numerical solutions for VO-FDEs. The
method is accurate, efficient and direct. Numerical examples with different variable-orders
have been presented to demonstrate the effectiveness of the method.
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