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Abstract. An optimal model predictive control system is proposed here. The controller
is applied to stabilize a double inverted pendulum on a cart. The only control variable is a
simple force applied to the cart, where, six variables including the positions and velocities
of the cart, first link, and the second link of the pendulum must be stabilized. Thus,
it is an underactuated control system. Here, the system’s nonlinear equations of motion
are studied and linearized around the equilibrium point. Then, they are discretized using
Euler zero-order-hold method. The control signal is optimized based on the behavior of
system during a moving forward window. The proposed control approach is applied to the
system, and the results confirm efficiency of the proposed controller.

1. Introduction

In a variety of real applications such as vehicles, aerospace gadgets, robotic tools, etc.,
the system is governed by a fewer control input(s) compare to the outputs; such systems
are termed underactuated systems. Designing a controller for an underactuated system is
much more challenging and harder than for a fully actuated system [1]. Inverted pendulum
is a famous benchmark of control designing process. However, when a double inverted
pendulum is mounted over a wheeled cart, an underactuated, fast responding, nonlinear
and hard-to-control system is shaped. Double Inverted Pendulum on a Cart (DIPOAC) is
a good instance to evaluate the performance of controllers [2]. Many scientific works have
been done for modeling and stabilizing the DIPOAC. The model-based Linear Quadratic
Regulator (LQR) algorithm [3], intermittent predictive pole-placement control method [4],
self-tuning Proportional-Integral-Derivative (PID) control strategy [5] and RBFARX-based
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model predictive control approach [1], are some examples. A prosperous control method
for such systems is Model Predictive Control (MPC). Where, the system future behavior
is predicted, and a finite-time-domain optimization problem is defined. Moreover, at every
single sampling time, based on the solution of optimization problem, in respect to the cur-
rent measurement information, the first element of the optimal solution vector is considered
as the control signal. This process will be repeated in the next sampling step [6].
In this paper, we designed an optimal predictive controller for a DIPOAC, which is pre-
sented in the following. The rest of paper is organized as follows: in section II, nonlinear,
linear and discrete-time models of the DIPOAC is described. Section III illustrates the
proposed control method. In section IV, the results are discussed and then in the last
section the conclusions are clarified.

2. Double Inverted Pendulum on a Card Model

As conceptual schematic of DIPOAC is illustrated in Figure 1. In its equations of motion,
several output variables are used that θ0, θ1, θ2 are cart position, lower pendulum angle, and
upper pendulum angle, respectively, and θ′0, θ

′
1, θ
′
2 are cart velocity, angular velocity of the

lower pendulum, and angular velocity of the upper pendulum, respectively. For simplicity
we define θ = [θ0, θ1, θ2]

T and θ′ = [θ′0, θ
′
1, θ
′
2]
T . Therefore the dynamical model of the

DIPOAC can be written as (2.1) [1].

D(θ)θ′′ + C(θ, θ′)θ′ +G(θ) = Hu (2.1)

in which,

D(θ) =

 d1 d2cosθ1 d3cosθ2
d2cosθ1 d4 d5cos(θ1 − θ2)
d3cosθ2 d5cos(θ1 − θ2) d6

 , G(θ) =

 0
−f1sinθ1
−f2sinθ2


C(θ, θ′) =

0 −d2sin(θ1)θ
′
1 −d3sin(θ2)θ

′
2

0 0 d5sin(θ1 − θ2)θ′2
0 −d5sin(θ1 − θ2)θ′1 0

 , H =

1
0
0


where, d1 = m0 +m1 +m2, d2 = (m1/2 +m2)L1, d3 = m2L2/2, d4 = (m1/3 +m2)L

2
1, d5 =

m2L1L2/2, d6 = m2L
2
2/3, f1 = (m1/2 +m2)L1g, f2 = m2L2g/2.

The system can be linearized around the main equilibrium point, (θ0, θ1, θ2, θ
′
0, θ
′
1, θ
′
2) =

(0, ..., 0), with the state vector x = [θT , θ′T ]T as (2.2).

x′(t) = Acx(t) +Bcu(t) (2.2)

y(t) = x(t)

in which, Ac =

[
0 I

D(0)−1dG(0)
dθ

0

]
, Bc =

[
0

D(0)−1H

]
. After discretizing the model using

zero order hold with sampling period T = 0.002s, the discrete time model can be rewritten
as (2.3)
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x(k + 1) = Ax(k) +Bu(k) (2.3)

y(k) = x(k)

in which, A =


1 0 0 0.0020 0 0
0 1.0001 −0.0001 0 0.0020 0
0 −0.0001 1.0001 0 0 0.0020
0 −0.0150 −0.0016 1 0 0
0 0.1499 −0.0674 0 1.0001 −0.0001
0 −0.1199 0.1042 0 −0.0001 1.0001

B =


0
0
0

0.0012
−0.0030
0.0006

.

3. Optimal Model Predictive Stabilization Controller

If the system output is considered in a finite-time forward moving window (with the
length of N), then we have:

x(k + 1) = Ax(k) +Bu(k) (3.1)

x(k + 2) = Ax(k + 1) +Bu(k + 1) = A2x(k) + ABu(k) +Bu(k + 1)

...

x(k +N) = ANx(k) +
N−1∑
i=0

(AN−1−iBu(k + i))

Therefore, the output trajectory through the moving window is:

Xk = Γx(k) + ΨUk (3.2)

in which,

Xk =

 x(k + 1)
...

x(k +N)

 , Uk =

 u(k)
...

u(k +N − 1)

 ,Γ =


A
A2

...
AN

 ,Ψ =


B 0 · · · 0
AB B · · · 0

...
...

. . .
...

AN−1B AN−2B · · · B

 ,
The cost-functional of optimization is defined here as:

Jk,N = trace(XT
k Xk) = trace{UT

k ΨTΨUk + 2x(k)TΓTΨUk + x(k)TΓTΓx(k)} (3.3)

where, the optimal control signal, obtained as a solution for ∂J
∂u

= 0 → ΨTΨUk +
ΨTΓx(k) = 0, and we have U∗k = Φx(k) in which, Φ = (ΨTΨ)−1ΨTΓ, and u(k)∗ is the
first element of U∗k . Applying this optimal predictive control signal to the system, the
system’s next output will be obtained.

x∗(k + 1) = Ax(k) +Bu∗(k) = (A+BΦ1)x(k) (3.4)
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Figure 1. (Left) Conceptual Schematic of the DIPOAC, (Right) result of
the simulations.

in which, Φ1 is the first raw of Φ. Applying the proposed controller to control the
DIPOAC system, we can see the output trajectory as it is seen in Figure 1.

4. Conclusion

An optimal predictive stabilization controller is proposed here, and applied to control
a double inverted pendulum that is attached on a cart. Design of control law for such a
system is hard and challenging. Efficiency of the proposed controller is confirmed through
simulations.
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