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Abstract. In this paper we consider Nash equilibria for the affine linear quadratic frac-
tional differential game for a finite planning horizon where the dynamic system depends
on Caputo fractional derivatives. The Nash equilibrium is a proposed solution of a nonco-
operative game involving two or more players in which each player assumed to know the
equilibrium strategies of the other players, and no player has anything to gain by chang-
ing only their own strategy. According to the Pontryagin minimum principle for optimal
control problems and by constructing an error function, we define an unconstrained mini-
mization problem. In order to solve this problem, we can use any optimization algorithms.
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1. Introduction

Game theory is the study of mathematical models of strategic interaction between ratio-
nal decision-makers.[1] It has applications in all fields of social science, as well as in logic
and computer science. The Nash equilibrium is a proposed solution of a noncooperative
game involving two or more players in which each player assumed to know the equilibrium
strategies of the other players, and no player has anything to gain by changing only their
own strategy [2].

Fractional calculus, which has a lot of applications in science, mathematics and engineer-
ing (see [3]), can be considered as an extension of classical calculus. The main contributions
in fractional calculus were made in last two decades where it could be applied to engineering
and optimal control problems.
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2. Some preliminaries

2.1. Fractional derivative. Several definitions of a fractional derivative have been pro-
posed [4]. The left Caputo fractional derivative (CFD), for a real function y, can be defined
as follows:

c
aD

α
t (y(t)) =

1

Γ(n− α)

∫ t

a

(t− τ)n−α−1
( d
dτ

)n
y(τ)dτ, n− 1 < α < n. (2.1)

2.2. Properties of Legendre basis. The analytic form of the shifted Legendre polyno-

mials pn(t) of degree n on the interval [0, 1] is given by pn(t) =
∑n

m=0(−1)n+m (n+m)!tm

(n−m)!(m!)2
.

The function y(t) which belongs to the space of square integrable in [0, 1], may be expressed
in terms of shifted Legendre polynomials as

y(t) =
∞∑
m=0

cmpm(t), cm = (2m+ 1)

∫ 1

0

y(t)pm(t)dt, m = 0, 1, . . . .

3. Problem statement

In this section we introduce the problem. Let N̄ = 1, 2, . . . , N be the set of players.
The dynamic environment where the players interact is modeled by a linear time invariant
fractional differential equation as

c
0D

α
t (x(t)) = Ax(t) +

N∑
i=1

Biui(t), x(0) = x0 ∈ Rn, (3.1)

where ui(t) ∈ Rli , A ∈ Rn×n, and Bi ∈ Rn×li . Player i affects the state, x(t), of the system
(3.1) by choosing a strategy/control ui(t) at time t ≥ 0. We assume that the control
trajectory, denoted by ui, belongs to an admissible control space Ui. We denote the joint
control u = (u1, u2, ..., uN) ∈ U1 × U2 × · · · × UN = U and B = [B1B2 . . . BN ] ∈ Rn×l.
Formally, each player i is assumed to minimize the cost

Ji(ui, u−i) =

∫ 1

0

1

2

[
xT (t)Qix(t) +

N∑
j=1

uTj (t)Rijuj(t)
]

dt, (3.2)

Note that the functions g(x, u1, . . . , uN) = Ax(t) +
∑N

i=1Biui(t) and fi(t, x, u1, . . . , uN) =
1
2

[
xT (t)Qix(t) +

∑N
j=1 u

T
j (t)Rijuj(t)

]
for i = 1, . . . , N where Qi is symmetric positive semi

definite and Rij, i, j = 1, . . . , N are symmetric positive definite.
In performance index Ji(ui, u−i) is given in the (3.2), ui is the control of ith Player and

u−i are the controls for the rest of the players u−i = (uj, j 6= i). For each player, the goal
of game is to minimize (maximize) of his own performance index by selecting appropriate
control function.

Definition 3.1. (Nash Equilibrium [2] ). The players control actions u∗i (.)(i = 1, . . . , N)
are said to be in a Nash equilibrium if for any other admissible control actions ui(.)(i =
1, . . . , N) the following inequalities hold: Ji(u

∗
i , u
∗
−i) ≤ Ji(ui, u

∗
−i), ∀ui ∈ Ui.
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(A): Assume that the dynamics and the running costs take the decoupled form{
fi(x, u1, . . . , uN) =

∑N
j=1 Lij(t, x, uj), i = 1, . . . , N

g(x, u1, . . . , uN) = g0(t, x) +
∑N

i=1 hi(t, x)ui.

Also, assume that Ui(i = 1, . . . , N) are closed and convex subsets of Rli , the functions
ui 7→ Lii(t, x, ui) are strictly convex and for each i = 1, . . . , N , either Ui is compact or Lii has

superlinear growth, lim|ui|→∞
Lii(t,x,ui)

ui
= +∞, i = 1, . . . , N. Then for every (t, x) ∈ [0, T ]×

Rn and any vector pi(t) ∈ Rn, there exists a unique set (u∗1(t), . . . , u
∗
n(t)) ∈ U1×U2×· · ·×UN

such that u∗i (t) = arg minui∈Ui pi(t).hi(t, x)ui(t) + Lii(t, x, ui)(t). The assumptions in (A)
guarantee that the above minimizers exist and are unique [2].

4. an approximation method

In this section, a numerical scheme is presented to solve a Nash equilibria in the fractional
game where the fractional derivative is defined in the Caputo sense. We consider problem
(3.1). Hamiltonian functions for this problem is given by Hi = fi(t, x(t), u1(t), . . . , uN(t))+
λTi g(x(t), u1(t), . . . , uN(t)) where λi ∈ Rn are the Lagrange multipliers. The necessary
conditions is given as

c
0D

α
t x(t) = g(x(t), u1(t), . . . , uN(t)), x(0) = x0,

c
tD

α
1λi(t) =

∂Hi

∂x
(t, x(t), ui(t), u−i(t), λi(t)), λi(1) = 0, i = 1, . . . , N, (4.1)

∂Hi

∂ui
(t, x(t), ui(t), u−i(t), λi(t)) = 0, i = 1, . . . , N,

According to the PMP, if (x(t)T , ui(t)
T )T be an optimal solution of problem (3.1), then

there are λi(t) such that (x(t)T , ui(t)
T )T satisfies in (4.1). The basic idea of these methods

is to expand the solution function as a finite series of very smooth basis functions, as given

x(t) ' xs(t) =
s∑

m=0

cxmpm(t), ui(t) ' usi (t) =
s∑

m=0

cuimpm(t), λi(t) ' λsi (t) =
s∑

m=0

cλimpm(t),

where pm(t) are shifted Legendre polynomials. We propose shifted Legendre polynomials
to estimate control, state and co-state functions which this trial solutions satisfy the initial
or boundary conditions as

x̄s(t) = D(t) + F (t)xs(t), ūsi (t) = J(t) +K(t)usi , λ̄si (t) = L(t) +O(t)λsi , (4.2)

where D(t), F (t), J(t), K(t), L(t) and O(t) are real single variable functions such that the
approximations of x̄s, ūsi and λ̄si satisfy the initial or final conditions in (4.1). The trial
solutions (4.2) are the universal approximation and must satisfy conditions (4.1). Thus, we
have

c
0D

α
t x̄

s(t) = g(x̄s(t), ūs1(t), . . . , ū
s
N(t)), c

tD
α
1 λ̄

s
i (t) =

∂H̄i

∂x̄s
,

∂H̄i

∂ūsi
= 0, (4.3)
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where H̄i = H(t, x̄s(t), ūsi (t), ū
s−i(t)) for i = 1, . . . , N . In order to reformulate (4.3) as

an unconstrained minimization problem, we first collocate the optimality system (4.3) on
the s points. We choose the grid points to be the Chebyshev-Gauss-Lobatto points (see
[5]) associated with the interval [0, 1] as tk = 1

2
(1 − cos(πk

s
)), k = 1, 2, . . . , s. For the

discretized time interval [0, 1] with s grid points, left and right fractional derivatives (2.1)
can be approximately written as follows:

c
0D

α
t (x̄s(tk)) =

1

Γ(n− α)

∫ tk

0

(tk − τ)n−α−1
( d
dτ

)n
x̄si (τ)dτ, n− 1 < α < n,

c
tD

α
1 (λ̄si (tk)) =

(−1)n

Γ(n− α)

∫ 1

tk

(τ − tk)n−α−1
( d
dτ

)n
λ̄si (τ)dτ, n− 1 < α < n.

Hence, we define an optimization problem as

E(Ω) =
1

2

s∑
k=1

N∑
i=1

{
E1(tk,Ω) + Ei

2(tk,Ω) + Ei
3(tk,Ω)

}
, (4.4)

where Ω = (Cx, Cu1 , . . . , CuN , Cλ1 , . . . , CλN )T , Cx = (cx0 , . . . , c
x
s), C

ui = (cui0 , . . . , c
ui
s ) and

Cλi = (cλi0 , . . . , c
λi
s ) and E1, E

i
2 and Ei

3 are sum of the squares of the sides of (4.3) equations.

Lemma 4.1. If Ω∗ = (C∗x , C∗u1 , . . . , C∗uN , C∗λ1 , . . . , C∗λN ) satisfies the following equation

η(Ω) =
[
E1(t1,Ω), . . . , E1(ts,Ω), E1

2(t1,Ω), . . . , E1
2(ts,Ω), . . . , EN

2 (t1,Ω),

. . . , EN
2 (ts,Ω), E1

3(t1,Ω), . . . , E1
3(ts,Ω), . . . , EN

3 (t1,Ω), . . . , EN
3 (ts,Ω)

]T
= 0,

then Ω∗ is an optimal solution of (4.4). Proof. See [6].

In order to solve (4.4), which is an unconstrained optimization problem, we can use any
optimization algorithms.
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