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Abstract. In this paper, a four dimensional predator- prey model with infection in both
prey and predator populations is studied. This model consists of susceptible prey, infected
prey, susceptible predator, and infected predator. A control model and an optimal treat-
ment are studied. Infact, we make the control model for the above model and analyze
the application of control for related system. By this mean, we add the control functions
u1 and u2 where u1 is denoted as control factor for prey and infected prey species. u2 is
denoted as control factor for predator and infected predator species. The role of control
functions is to treat the infected prey and predator species. Moreover, we briefly describe
the optimal control approach. Finally, we are going to control the population of infected
prey and predators and establish the optimal criterion that consists of minimizing the total
number of infected species along with the treatment costs.

1. Introduction

Infectious diseases can be as a major factor in regulating human population size. For
example, Black Death in Europe in the 14th century killed up to one-fourth of the people
[3]. Reader may see more appliaction of diseases and control models for some biological
models in [1], [2], [5] and [6]. Let s(t), i(t), x(t) and y(t) denote the densities of the
susceptible prey, infected prey, susceptible predator and infected predator respectively. A
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four dimensional predator- prey model with infection in both species may be written:

ds

dt
= s(1− s− i)− asi− bsx,

di

dt
= asi− di− fxi−miy,

dx

dt
= csx+ gix− exy − δx,

dy

dt
= exy − αy + niy. (1.1)

This model consists of two populations: the prey population and the predator population.
Both of the presented populations have two sub classes: susceptible and infected [4]. It is
assumed that in this research all parameters are non-negative.

2. Control Model Analysis

We make the control model for the above system (1.1) and analyze it. By adding
u1(control factor for prey and infected prey species) and u2 (control factor for the predator
and infected predator species) we may write the following control system :

ds

dt
= s(1− s− i)− a(1− u1)si− bsx,

di

dt
= a(1− u1)si− di− fxi−miy,

dx

dt
= csx+ gix− e(1− u2)xy − δx,

dy

dt
= e(1− u2)xy − αy + niy, (2.1)

where 0 6 ui 6 1, i = 1, 2. When ui = 0, no treatment occurs and whenever ui = 1, the
model shows the full treatment.

Theorem 2.1. Nontrivial equilibrium point E∗ is locally asymptotically stable for model
(2.1) provided D′1 > 0, D′3 > 0, D′4 > 0 and D′1D

′
2D
′
3 > D′3

2 +D′1
2D′4. where D′1, D

′
2, D

′
3and

D′1 are assumed as coefficiets of corresponding characteristic equation.

Proof. At the interior equlibrium E∗, the Jacobian matrix J(E∗) can be obtained as follows:

J(E∗) =


−s∗ −(1 + a(1− u1))s∗ −bs∗ 0

a(1− u1)i∗ 0 −fx∗ −mi∗
cx∗ gx∗ 0 −e(1− u2)x∗
0 ny∗ e(1− u2)y∗ 0


The corresponding characteristic equation is λ4 + D′1λ

3 + D′2λ
2 + D′3λ + D′4 = 0 where

D′1 = s∗, D′2 = e2(1 − u2)2x∗y∗ + fgx∗
2

+ mni∗y∗ + a(1 − u1)[a(1 − u1) + 1]s∗i∗ + bcs∗x∗,
D′3 = e2(1− u2)2s∗x∗y∗ + fgs∗x∗2 +mns∗i∗y∗ − e(1− u2)nfx∗2y∗ +me(1− u2)
gi∗x∗y∗ + a(1 − u1)bgs

∗i∗x∗ − cf(a(1 − u1) + 1)s∗x∗ , and D′4 = −e(1 − u2)nfs
∗x∗2y∗ +
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[e(1− u2)mg+ a(1− u1)(a(1− u1) + 1)e(1− u2)− a(1− u1)be(1− u2)n+ bcmn− cme(1−
u2)[a(1− u1) + 1)]s∗i∗x∗y∗.

By Routh - Hurwitz criterion, all the eigenvalues of J(E∗) have negative real parts if{
D′i > 0, i = 1, 3, 4,
D′1(D

′
2D
′
3 −D′1D′4)−D′23 > 0.

Therefore, if D′1 > 0, D′3 > 0, D′4 > 0 and D′1D
′
2D
′
3 > D′3

2 +D′1
2D′4, E

∗ is locally asymptot-
ically stable. �

3. Optimal Control

We now study the optimal control approach. Infact, we are going to control the popu-
lation of infected prey and predators. We establish the optimal criterion that consists of
minimizing the total number of infected species along with the treatment costs. Following
control function is necessary that minimizes the objective functional:

Min

∫
0

T

[
1

2
(W1u1

2 +W2u2
2) + i(t) + y(t)]dt

We derive the associated Hamiltonian for the optimal control problem:

H = 1
2
(W1u1

2 +W2u2
2) + i(t) + y(t) + ps(t)(s(1− s− i)− a(1− u1)si− bsx)

+pi(t)(a(1− u1)si− di− fxi−miy + px(t)(csx+ gix− e(1− u2)xy − δx)

+py(t)(e(1− u2)xy − αy + niy).

where the functions ps(t), pi(t), px(t), py(t) are called the co-state variables. These variables
must satisfy the following set of differential equations

dps(t)

dt
= −∂H

∂s
,
pi(t)

dt
= −∂H

∂i
,
dpx(t)

dt
= −∂H

∂x
,
dpy(t)

dt
= −∂H

∂y

and so

dps(t)

dt
= −(ps(t)− 2sps(t)− ips(t)− aisps(t) + aisu1ps(t)− bxps(t)),

dpi(t)

dt
= −(1− sps(t)− asps(t) + asu1ps(t) + aspi(t)− asu1pi(t)− dpi(t)

− fxpi(t)−mipi(t) + gxpx(t) + nypy(t)),

dpx(t)

dt
= −(−bsps(t)− fipi(t) + cspx(t) + gipx(t)− eypx(t) + eyu2px(t)

− δpx(t) + eypy(t)− u2eypy(t)),
dpy(t)

dt
= −(1−mipi(t)− expx(t) + exu2px(t) + expy(t)− exu2py(t)− α

py(t) + nipy(t)). (3.1)
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We have the boundary conditions for system (3.1) as follows,

s(0) = s◦, i(0) = i◦, x(0) = x◦, y(0) = y◦, ps(T ) = pi(T ) = px(T ) = py(T ) = 0.

Differentiating H with respect to u1 and u2 yields:

∂H

∂u1
= W1u1 + asi(ps(t)− pi(t)) = W1u1 + (asi)ps(t)− (asi)pi(t)) = 0

∂H

∂u2
= W2u2 + exi(px(t)− py(t)) = W2u2 + (exi)px(t)− (exi)py(t)) = 0

Thus, the control factors u1 and u2 can be obtained as follows:

u1(t) =
asi

W1

(−ps(t) + pi(t)), u2(t) =
exi

W2

(−px(t) + py(t)).

As regards 0 6 u1, u2 6 1 , we have the optimal control laws as:

u1
∗(t) = min{1,max{0, u1}} = min{1,max{0, asi

W1

(pi(t)− ps(t))}},

u2
∗(t) = min{1,max{0, u2}} = min{1,max{0, exi

W2

(py(t)− px(t))}}.
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