

# DISCOVER THE MAXIMUM DESCRIPTIVE USER GROUPS ON THE SOCIAL WEB

## NASSER AKHOUNDI, AND ZAHRA ABBASI\*

School of mathematics and computer science, Damghan university, Damghan, Iran akhoundi@du.ac.ir; zahra.abbasi@yahoo.com

ABSTRACT. Collaborative content sites have become essential resources for consumers to consult in order to make purchasing decisions on various items such as restaurants, movies, e-commerce products, etc. In this paper, we model discovering groups with maximum descriptively from collaborative social contents of the form  $\langle i, u, s \rangle$ , where  $i \in \mathcal{I}, u \in \mathcal{U}$  and s is the integer rating that user u has assigned to item i. Labeled groups from user's attributes are found by solving a multi- objective optimization problem. The performance of the approach is examined by some experiments on real data-sets.

## 1. INTRODUCTION

A collaborative rating site  $\mathcal{D}$  is modeled as a triple  $\langle \mathcal{I}, \mathcal{U}, \mathcal{R} \rangle$ , representing the sets of items, reviewers, and rating records respectively. Each rating record  $r \in \mathcal{R}$  is itself a triple  $\langle i, u, s \rangle$ , where  $i \in \mathcal{I}, u \in \mathcal{U}$  and s is the integer rating that user u has associated to item i.  $\mathcal{I}$  is associated with a set of attributes, denoted as  $\mathcal{I}_A = \{ia_1, ia_2, \ldots\}$ , and each item  $i \in \mathcal{I}$  is a tuple with  $\mathcal{I}_A$  as its schema. In other words,  $i = \langle iv_1, iv_2, \ldots \rangle$ , where each  $iv_j$  is a set of values for attribute  $ia_j$ . The schema for the reviewers is  $\mathcal{U}_A = \{ua_1, ua_2, \ldots\}$ , i.e.,  $u = \langle uv_1, uv_2, \ldots \rangle \in \mathcal{U}$ , where each  $uv_j$  is a value for attribute  $ua_j$ . As a result, the tuple for i, the tuple for u, and the numerical rating score s are joint by  $r = \langle i, u, s \rangle$  which itself is a tuple in the form  $\langle iv_1, iv_2, \ldots, uv_1, uv_2, \ldots, s \rangle$ . The set of all attributes is denoted as  $A = \{a_1, a_2, \ldots\}$ .

**Definition 1.1.** a group g is a set of rating records  $r = \langle u, i, s \rangle$  described by a set of attribute value pairs shared among the reviewers and the items of those rating records. The description of a group g is defined as  $\{\langle a_1, v_1 \rangle, \langle a_2, v_2 \rangle, \cdots\}$  where each  $a_i \in A$  (set of all attributes) and each  $v_i$  is a set of values for  $a_i$ .

<sup>2010</sup> Mathematics Subject Classification. 46N10.

Key words and phrases. maximum descriptively, optimization, user group discovery, rating record.

<sup>\*</sup> Speaker.

#### N.AKHOUNDI ET AL.

We denote the set of attributes g by A(g), and the number of rating records contained in g is denoted by |g|. For example, in MOVIELENS datasets, the group  $g = \{\langle gender, female \rangle, \langle location, DC \rangle, \langle genre, romance \rangle\}$  contains raing records for romance movies whose reviewers are all female in DC. We note that  $A(g) = \{gender, location, genre\}$ .

Given a rating record  $r = \langle v_1, v_2, \ldots, v_k, s \rangle$ , where each  $v_i$  is a set of values for its corresponding attribute in the schema A, and a group  $g = \{\langle a_1, v_1 \rangle, \langle a_2, v_2 \rangle, \ldots, \langle a_n, v_n \rangle\}, n \geq k$ , we say that g covers r, denoted as r < g, iff  $\forall i \in [1, n], \exists r.v_j$  such that  $v_j$  is a set of values for attribute  $g.a_i$  and  $r.v_i \subseteq g.v_j$ .

**Definition 1.2.** For two groups  $g_1$  and  $g_2$ , we say that

- (1)  $g_1 < g_2$  iff  $\forall r \in R$  such that  $r < g_1$  we have  $r < g_2$ .
- (2)  $g_1$  similar  $g_2$  denoted as  $g_1 \sim g_2$  iff  $A(g_1) = A(g_2)$ .

For a group g and group set G, we say that g < G, iff  $\forall h \in G, h \nsim g$ , and  $\exists \tilde{g} \in G$  such that  $g < \tilde{g}$ . We denote by  $G_g^{-\tilde{g}}$  a group set that was constructed by replacing g with  $\tilde{g}$  in G, i.e.,  $G_g^{-\tilde{g}} = G - \{\tilde{g}\} \cup \{g\}$ .

For a given set of rating records  $R \subseteq \mathcal{R}$  and a group set G, the percentage of rating records in R contained in groups in G is called coverage, and it is defined as follow [1].

$$coverage(G, R) = \frac{|\cup_{g \in G} (r \in R, r < g)|}{|R|}$$

Diversity of G is a value between 0 and 1 that measures how distinct groups in group set G are from each other, is defined as follows [1]

$$diversity(G, R) = \frac{1}{(1 + \sum_{g_1, g_2 \in G} |r \in R, r < g_1 \land r < g_2|)}$$

We interest that number attributes of group set is maximal. We define number attributes of group set G as following,

$$Nattrs(G) = |\cup_{g \in G} A(g)|.$$

Group sets that have more attributes provide users with more information to make their decisions.

## 2. MAXIMUM DESCRIPTION OPTIMIZATION

We define our constraint optimization problem as follows: for a given set of rating records R, the problem is to identify all group sets, such that each group set satisfies:

- Nattrs(G) is maximized;
- $coverage(G, R) \ge \alpha;$
- $diversity(G, R) \ge \beta$
- $|G| \leq k$ .

In our model, we assume that a group set G satisfies two conditions. First  $\forall g_1, g_2 \in G, g_1 \nsim g_2$ , i.e., group set G does not contain two similar groups. Second there is no two groups,  $g_1, g_2 \in G$  such that  $g_1 < g_2$ , which means that G has groups with maximal attributes.

 $\mathbf{2}$ 

**Theorem 2.1.** The decision version of our problem is NP-Complete [2].

Our algorithm is described in details in Algorithm 1.

| A 1          | lgoritk | nm 1     | $\cdot N$ | faximum | descri | ntion | al  | gorit | hm    |
|--------------|---------|----------|-----------|---------|--------|-------|-----|-------|-------|
| $\mathbf{n}$ | igoriu  | . 1111 Т | • 1V.     | lannum  | ucseri | puon  | and | goin  | 11111 |

Data:  $\alpha, \beta, k, m$ 1  $G_{opt} \leftarrow \emptyset$ 2 Initialization : **3** For i = 1, ..., m Choose initial group sets  $G_i^{(0)} = \{g_i\}$  where  $coverage(g_1) \ge coverage(g_2) \ge \ldots \ge coverage(g_n).$ 4 Search Step :  $\mathbf{5}$ for i = 1, ..., m do for  $k = 0, 1, 2, 3, \dots$  do 6  $G = G_i^{(k)}$  $\mathbf{7}$ opt = false8 for  $h \in G$  and  $\forall g$  in lattice-based of h do 9  $\begin{array}{l} \text{if } g < h \text{ and } coverage(G_g^{-\tilde{g}}) \geq \alpha \text{ and } diversity(G_g^{-\tilde{g}}) \geq \beta \text{ then} \\ \mid \quad G_i^{(k+1)} \leftarrow G_g^{-\tilde{g}} \end{array}$ 10 11 opt = true12break  $\mathbf{13}$ else if  $|G \cup \{g\}| \ge k$  and  $coverage(G \cup \{g\}) \ge \alpha$  and  $diversity(G \cup \{g\}) \ge \beta$  $\mathbf{14}$ then  $G_i^{(k+1)} \leftarrow G \cup \{g\}$ 15opt = true16break 17end 18 if opt == false then  $\mathbf{19}$  $G_{opt}.add(G_i^{(k)}, Nattrs(G_i^{(k)}))$  $\mathbf{20}$ break  $\mathbf{21}$ end  $\mathbf{22}$ end 23 24 end 25 let (G', Nattrs(G')) be the pair with maximum number attributes in  $G_{opt}$ **26** return G':

#### 3. Experiments

Real datasets, MovieLens, has been used for our experiments. For each user, gender, age-group, occupation and zip code are provided. The MovieLens 1M datasets contains 100000 rating of 3952 movies by 6040 users. The attribute gender takes two distinct values: male or female. The numeric age is converted into categorical attribute value, namely teenaged, young, middle-age and old. 21 occupations such as student, doctor, lawyer, etc are

# N.AKHOUNDI ET AL.

also listed. Finally, zip codes are converted into the USA states (http://zip.usps.com). Thus, 52 distinct values can be taken for the attribute location [3]. Five items are selected randomly and then, the groups are provided by our algorithm (Table 1) that we assume  $\alpha = 0.8, \beta = 0.8, k = m = 2$  and DEM method [2] (Table 2). In Table 1-2 the column **Cov**, **Natt**, and **Div** denote coverage, number attributes, and diversity respectively.

| Id  | Cov   | Natt | Div | Optimal group set                                |
|-----|-------|------|-----|--------------------------------------------------|
| 73  | 0.804 | 4    | 1   | First group={ young student women in California} |
|     |       |      |     | Second group= $\{men\}$                          |
| 200 | 0.801 | 3    | 1   | First group={ young student women}               |
|     |       |      |     | Second group= $\{men\}$                          |
| 500 | 0.806 | 3    | 1   | First group={ young student women}               |
|     |       |      |     | Second group= $\{men\}$                          |
| 600 | 1     | 4    | 1   | First group={ old administer men in California}  |
|     |       |      |     | Second group={old educator men in Seattle }      |
| 821 | 0.818 | 4    | 1   | First group={ old educator men in Texas }        |
|     |       |      |     | Second group={ young }                           |

TABLE 1. Maximum description method

TABLE 2. Formal programming

| Id  | Cov   | Natt | Div | Optimal group set                              |
|-----|-------|------|-----|------------------------------------------------|
| 73  | 0.812 | 4    | 1   | First group={young women in California}        |
|     |       |      |     | Second group= $\{men\}$                        |
| 200 | 0.908 | 2    | 1   | First group= $\{men\}$                         |
|     |       |      |     | Second group={young women}                     |
| 500 | 1     | 1    | 1   | First group= $\{men\}$                         |
|     |       |      |     | Second group= $\{\text{women}\}$               |
| 600 | 1     | 4    | 1   | First group={old administer men in California} |
|     |       |      |     | Second group={old educator men in Seattle}     |
| 821 | 0.812 | 3    | 1   | $First group = \{middle-aged men\}$            |
|     |       |      |     | Second group= $\{young\}$                      |

## References

- 1. B. Omidvar-Tehrani, S. Amer-Yahia, P.F. Dutot, and D. Trystram, *Multi-objective group discovery* on the social web. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases Springer, Cham (2016) 296–312.
- M. Das, S. Amer-Yahia, G. Das, and C. Yu, MRI: Meaningful interpretations of collaborative ratings, Proceeding of the VLDB Endowment, 4 (2011) 1063–1074.