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Abstract. In this paper, we use the second Chebyshev wavelets (SCWs) for solving the
linear fractional Langevin equation. By using the second Chebyshev wavelets operational
matrix, the fractional Langevin equation (FLE) is transformed into a system of algebraic
equations. Then by solving this algebraic system, the approximate solution of the main
problem is obtained. Finally, we solve an example by the SCWs method.

1. Introduction

In 1908, the Langevin equation was proposed by French phisicist Paul Langevin to give
an elaborate description of Brownian motion[2]. The existence and uniqueness of solutions
of the fractional Langevin equation were verified by Tao Yi et al.[5] and Baghani [1]. in this
paper, we use the second Chebyshev wavelets to solve the initial value problem of fractional
Langevin equation of the from

Dβ(Dα + γ)x(t) = f(t), 0 < t ≤ 1, (1.1)

x(0) = µ, x(α)(0) = ν,

where γ ∈ R, 0 < α < 1, 0 < β < 1, Dα and Dβ are the Caputo derivatives and
f : [0, 1]× R −→ R is a given continuously differentiable function.

The Caputo fractional derivative of order α, k − 1 < α ≤ k, k ∈ N, of the function f(t)
is defined as

Dαf(t) = Ik−αDkf(t) =
1

Γ(k − α)

∫ t

a

f (k)(τ)

(t− τ)α−k+1
dτ
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where Iβ(.) is the Riemann-Liouville fractional integral of order β.

2. The SCWs and operational matrix of the fractional integration

The second Chebyshev wavelets are defined on the interval [0, 1) as:

ψnm(t) =

{
2

k
2

√
2
π
Um(2kt− 2n+ 1), n−1

2k−1 ≤ t < n
2k−1 ,

0, otherwise,

where n = 1, 2, . . . , 2k−1, m = 0, 1, . . . ,M −1, k and M are positive integers and coefficient√
2
π

is used for orthonormalitly. The function Um(t) is the second Chebyshev polynomial of

degree m. Note that, These polynomials are defined on the interval [−1, 1] by the recurrence

U0(t) = 1, U1(t) = 2t, Um+1(t) = 2tUm(t)− Um−1(t),
where m = 1, 2, . . . .

A function f ∈ L2([0, 1]) can be approximate in terms of the SCWs as

f(t) ≈
2k−1∑
n=1

M−1∑
m=0

cnmψnm(t) = CTΨ(t) = f̂(t) (2.1)

where

Ψ(t) = [ψ10(t), ψ11(t), . . . , ψ1(M−1)(t), ψ20(t), . . . , ψ2(M−1)(t), . . . , ψ2k−10(t), . . . , ψ2k−1(M−1)(t)]
T ,

C = [c10, c11, . . . , c1(M−1), c20, . . . , c2(M−1), . . . , c2k−10, . . . , c2k−1(M−1)]
T .

We define the SCWs matrix Φm′×m′ as

Φm′×m′ = [Ψ(
1

2m′
),Ψ(

3

2m′
), . . . ,Ψ(

2m′ − 1

2m′
)],

where m′ = 2k−1M .

Theorem 2.1. Suppose that f : [0, 1] −→ R be a real valued function and f ∈ Cm[0, 1].
Then we have

‖ f̂(t)− f(t) ‖≤ 2

2m′(k−1)4m′m!
sup
t∈[0,1]

| f (m)(t) |

where f̂(t) is given by Eq. (2.1).

Proof. see [3] �

Now, we define a m′-set of block-pulse functions (BPFs) on the interval [0, 1) as

bi(t) =

{
1, i−1

m′
≤ t < i

m′

0, otherwise,

where i = 1, ...,m′.
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Also, a function f ∈ L2([0, 1]) can be approximate in terms of BPFs as the from

f(t) ≈
m′∑
i=1

fibm′(t) = F TBm′(t)

where F = [f1, f2, ..., fm′ ]
T and Bm′(t) = [b1(t), b2(t), ..., bm′(t)]

T .
Chebyshev wavelets can be expanded in terms of BPFs as

Ψ(t) = Φm′×m′Bm′(t).

Let

IαΨ(t) ≈ Pα
m′×m′Ψ(t), (2.2)

where Iα is the Riemann-Liouville fractional integral operator of order α. The matrix
Pα
m′×m′ is called the Chebyshev wavelets operational matrix of fractional integration and is

obtianed as follows

Pα
m′×m′ = Φm′×m′F

αΦ−1m′×m′ ,

where Fα is the BPFs operational matrix of fractional integration [4] and IαBm′(t) =
FαBm′(t).

3. Solving fractional linear Langevin equation

Consider the initial value problem (1.1). From [5], we can see that x(t) is a solution of
Eq. (1.1) if and only if x(t) is a solution of the integral equation:

x(t) = Iα+βf(t)− γIαx(t) + g(t) (3.1)

where

g(t) =
ν + γµ

Γ(α + 1)
tα + µ.

Now let

x(t) ' XTΨ(t), f(t) ' F TΨ(t), g(t) ' GTΨ(t). (3.2)

Then by Eq.(2.2) we have

Iα+βf(t) ' F TPα+βΨ(t), Iαx(t) ' XTPαΨ(t). (3.3)

By substituting the Eqs. (3.2) and (3.3) in Eq. (3.1) we obtain

XTΨ(t) = F TPα+βΨ(t)− γXTPαΨ(t) +GTΨ(t). (3.4)

The Eq. (3.4) yields the following system

XT = F TPα+β − γXTPα +GT

of algebraic equations. By solving this system, the approximate solution of equation (3.1)
is obtained.
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4. Numerical example

In this section, we solve an example by proposed method.

Example 4.1. Consider the initial value problem

D1/2(D1/3 + 1)x(t) = f(t), x(0) = 0.5, x(
1
3
)(0) = 0, (4.1)

where

f(t) = −Γ(2)

Γ(5
2
)
t(

3
2
) − 10Γ(2)Γ(5/3)

3Γ(8
3
)Γ(13

6
)
t(

7
6
)

The exact solution of Eq. (4.1) is x(t) = 1
2
−t2. we have solved the Eq. (4.1) using proposed

method. Table 1 shows the absolute error and approximate solutions in different values of
t.

Table 1. Approximate solutions and absolute error for M = 5 and k = 5, 7
in example 4.1

approximate solutions absolute error
t M = 5, k = 5 M = 5, k = 7 exact solution M = 5, k = 5 M = 5, k = 7

0.1 4.899622e− 01 4.899952e− 01 4.90e− 01 3.770139e− 05 4.777029e− 06
0.2 4.599650e− 01 4.599964e− 01 4.60e− 01 3.499037e− 05 3.540749e− 06
0.3 4.099681e− 01 4.099970e− 01 4.10e− 01 3.180331e− 05 2.937636e− 06
0.4 3.399704e− 01 3.399974e− 01 3.40e− 01 2.951829e− 05 2.577967e− 06
0.5 2.499721e− 01 2.499976e− 01 2.50e− 01 2.782651e− 05 2.335707e− 06
0.6 1.399734e− 01 1.399978e− 01 1.40e− 01 2.651622e− 05 2.159511e− 06
0.7 9.974536e− 03 9.997975e− 03 1.00e− 02 2.546331e− 05 2.024465e− 06
0.8 −1.400245e− 01 −1.400019e− 01 −1.40e− 01 2.459249e− 05 1.916949e− 06
0.9 −3.100238e− 01 −3.100018e− 01 −3.10e− 01 2.385570e− 05 1.828849e− 06

CPU times(s) 0.229319 1.051019
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