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Abstract. In this paper, a minimum information approach is applied to the capacitated
p-median problem to estimate the most likely allocation solution. Indeed, the most proba-
ble solution is achieved through minimizing a log-based objective function while the total
transportation cost should be less than or equal to a pre-determined budget. The problem
is solved by using the Lagrangian dual method and a numerical example is provided to
verify the added value of the proposed model.

1. Introduction

The p-median problem is one of the main issues in the field of locating facilities with a
mini-sum objective function where its purpose is to locate p facilities and allocate demand
nodes so that the total demand-weighted distance would be minimized. Various approaches
to solve the p-median problem have been provided by [4]. When there is a lack of infor-
mation in the network, the minimum information (MI) approach can be applied, as an
extension of the well-known entropy model [5] which provides an extended measure of the
likelihood of a certain macro state on the existence of some appropriate micro state space.
Abareshi and Zaferanieh [1] proposed a new bi-level p-median problem in which the total

cost of locating facilities as well as serving demands was minimized through the upper level
while the MI approach was applied in the lower level to determine the most unbiased
allocation solution. In this paper, we attempt to locate p capacitated facilities with a
pre-determined budget where the demands are not only allocated based on the distances,
but some other attributes such as local and geographical features represented by prior
probabilities of serving the demand of nodes by different facilities, taken into account by
multiple attributes decision making procedures are also effective.
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Table 1. The notation used in the model

Notation Definition

N = {v1, ..., vn} The set of nodes
E The set of links
I The index set of client nodes
J The index set of candidate points for establishing facilities
yj The binary variable representing whether the node vj , j ∈ J is used to locate a facility or not
cj The capacity of node vj , j ∈ J
wi The total demand of the client node vi, i ∈ I
pij The probability of serving the demand of node vi, i ∈ I by facility vj , j ∈ J
xij The decision variable representing the amount of demand of node vi, i ∈ I provided by facility vj , j ∈ J
dij Per unit cost to serve the demand of node vi, i ∈ I by facility vj , j ∈ J
B The total available budget

2. The capacitated p-median problem applying the minimum information
approach

Consider a network G = (N,E) where the other frequently used notations are listed in
Table (1). Following the approach presented in [1] to formulate the log-based objective
function resulted by the MI, the minimum information capacitated p-median (MICpM)
problem is introduced as follows:

(MICpM): min
x,y

∑
j∈J

∑
i∈I

xij(lnxij − 1− ln pij) (2.1)

∑
j∈J

yj = p (2.2)

∑
j∈J

xij = wi, ∀i ∈ I (2.3)

∑
i∈I

xij ≤ yjcj, ∀j ∈ J (2.4)∑
j∈J

∑
i∈I

dijxij ≤ B (2.5)

yj ∈ {0, 1}, xij ≥ 0, ∀i ∈ I, j ∈ J,

Constraint (2.2) assures that the number of established facilities is equal to p and constraints
(2.3) practically guarantee that the demands of all vertices i are supplied. Constraints (2.4)
make all open facilities serve the demands less than or equal to their capacities. In addition,
Constraint (2.5) states that the total spent cost does not exceed the available budget B.

2.1. Lagrangian dual solution approach. Relaxing constraints (2.4) by introducing the
dual variables λj ≥ 0, the location aspect of the problem can be separated from the rest
by using the following Lagrangian dual problem, see [2]:
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max
λ

LR(λ) = min
x,y

L(x, y) =
∑
j∈J

∑
i∈I

xij(lnxij − 1− ln pij) +
∑
j∈J

λj(
∑
i∈I

xij − yjcj)

=
∑
j∈J

∑
i∈I

xij(lnxij − 1− ln pij + λj)−
∑
j∈J

λjcjyj (2.6)

subject to binary and non-negativity constraints with (2.2),(2.3) and (2.5). Given multi-
pliers λj ≥ 0, Problem L(x, y) can be decomposed into two following sub-problems:

SP1 : max
y

L1(y) =
∑
j∈J

λjcjyj (2.7)

s.t.
∑
j∈J

yj = p, yj ∈ {0, 1} ∀j ∈ J

Clearly, having the variables λj, the optimal solution of SP1 would be estimated by selecting
the p largest values λjcj and setting the corresponding variables yj = 1 and the others equal
to zero. The second sub-problem is introduced as follows:

SP2 : min
x

L2(x) =
∑
j∈J

∑
i∈I

xij(lnxij − 1− ln pij + λj) (2.8)

∑
j∈J

xij = wi, ∀i ∈ I (2.9)

∑
j∈J

∑
i∈I

dijxij ≤ B (2.10)

xij ≥ 0, ∀i ∈ I, j ∈ J.

Lemma 2.1. Let S = {j ∈ J |yj = 1} be the set of located facilities determined by sub-
problem SP1 and γ, η be the Lagrangian dual multipliers corresponding to constraints (2.9)
and (2.10) in the sub-problem SP2. Then the optimal solution of (2.8) is estimated by
xij = pije

−(λj+γi+ηdij), ∀j ∈ S, i ∈ I, see [1].

Writing the Karush-Kuhn-Tucker (KKT) optimality conditions of model (2.8) and using
the linearized approaches introduced in [3], the linear mixed-integer system to be solved is
equivalent to the following:

xij = vjfij, fij ≤ Myj, fij ≥ zij −M(1− yj), fij ≤ zij ∀i ∈ I, j ∈ J

B −
∑
j∈J

∑
i∈I

xij ≤ Mt, ui − zij ≤ M(1− t), ∀i ∈ I,∀j ∈ J

zij ≤ ui, ki ≥ 1 ∀i ∈ I, j ∈ J,
∑
j∈J

∑
i∈I

xij ≤ B,
∑
j∈J

xij = wi, ∀i ∈ I

ui, zij > 0, fij ≥ 0, t ∈ {0, 1}, ∀i ∈ I, j ∈ J,

in which M is a sufficiently large number and vj = e−λj where λjs could be estimated
through iterative methods [2]. To obtain the tightest lower bound that is close to the
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Table 2. The nodes’ capacities and demands along with their weights with respect to criteria
r = 2, ..., 6

Nodes 1 2 3 4 5 6 7 8 9

c 300 200 350 320 250 250 350 100 200
w 50 60 80 40 90 100 80 60 50

Criteria 2 3 4 5 6 7 8 9

2 0.0541 0.0270 0.1351 0.1622 0.0811 0.1081 0.0541 0.1351 0.2432
3 0.0244 0.0488 0.1220 0.0976 0.1707 0.1951 0.2195 0.0732 0.0488

4 0.0455 0.1136 0.1591 0.0227 0.0682 0.1591 0.2045 0.1818 0.0455
5 0.2162 0.0270 0.0811 0.1351 0.1081 0.0541 0.2432 0.0270 0.1081
6 0.2286 0.0571 0.1429 0.0286 0.1143 0.0857 0.2571 0.0571 0.0286

Table 3. The allocation solution for the MICpM problem

Facility \ Node 1 2 3 4 5 6 7 8 9 ULOF

B = 15000 Weight1 = [0.3462 0.1923 0.1154 0.0385 0.1154 0.1923]

3 15.88 24.89 40.59 7.19 25.27 39.25 11.86 11.85 15.48 2569.23
5 13.39 21.60 22.26 13.38 37.26 36.29 16.81 20.36 14.11

7 20.72 13.52 17.15 19.43 27.47 24.46 51.33 27.79 20.41

B = 10000 Weight1 = [0.3462 0.1923 0.1154 0.0385 0.1154 0.1923]

3 17.73 33.83 76.55 2.48 15.32 48.56 1.29 4.77 15.48 2724.47
5 11.75 23.05 1.00 13.17 64.41 44.90 5.20 23.36 14.11
7 20.52 3.12 2.45 24.35 10.27 6.54 73.51 31.88 20.41

optimal value, the problem LR(λ∗) = maxλ≥0 LR(λ) should be solved. The sub-gradient
algorithm is an effective method to solve this Lagrangian dual problem whereby the lower
and upper bounds are updated, see [2].

Example 2.2. Consider the small network shown in Figure (1) wherein I = J = N and
the costs of links have been given next to them. The amount of dij for each pair (i, j) is
considered as the shortest distance between i and j. In addition, the capacities, c, and
demands, w, along with the comparative weights of nodes with respect to the other 5
attributes r = 2, ..., 6, except the approximate distances, to compute the probabilities pij,
are inserted in Table (2), see [1].

Figure 1. The grid network with 9 nodes

To see the effects of available budget as well as emphasizing on different attributes, the
solution of the MICpM problem for p = 3 is estimated for B = 15000 and B = 10000
and weight vector Weight1 inserted in Table (3). It can be realized, if capacities are large
enough, the shares of selected facilities for the MICpM allocation solution are proportional
to their probabilities, see Table (3). The probabilities p(1, j); j = 1, ..., 9 forWeight1 are es-
timated as p(1, :) = [0.1617, 0.1072, 0.1090, 0.1423, 0.0983, 0.0895, 0.1471, 0.0642, 0.0808].
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Among selected medians 3, 5, 7 in Table (3), median 7 has the most probability to serve
the demand of node 1 while nodes 3 and 5 are ranked as the second and third. This can
be also inferred from Table (3). However, decreasing the budget B to 10000 results in a
different allocation attempting to assign as much demand as possible to the closer facilities,
compare the column of i = 3 in cases B = 10000 and B = 15000.
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