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Abstract. In this paper, applying a least squared approach, a new inverse bi-objective
model to the p-median problem is proposed to estimate the demands of nodes where the
locations of p facilities with the number of visited customers by each one and the target
values for nodes’ demands are previously available. The purpose is to determine the
allocation solution in such away that the sum of squared errors between the target and
the estimated values as well as the transportation cost would be minimized. The resulted
bi-objective problem is solved by using the ϵ-constraint algorithm and a numerical example
is provided to verify the added value of the proposed model.

1. Introduction

Locating p facilities and allocating the clients’ demands with the purpose of minimizing
the total transportation cost, named as the p-median, has been always one of the main net-
work issues. Such exact methods as branch and bound [7] and Lagrangian dual relaxation
[3] can be used to solve the p-median problem.
In an inverse location problem, the task is to change some parameters of the problem,

such as traffic connections or weights of nodes, at the minimum cost so that a pre-specified
solution becomes optimal, see [8]. Burkard et al. [4] investigated the inverse 1-median
problem with variable weights of nodes and proved that the problem is solvable by a
greedy type algorithm in O(n log n) time in a tree network or a plane and in O(n2) time on
cycles. The well-known origin-destination (O−D) trip matrix estimation problem is usually
interpreted as the inverse of the traffic assignment problem (TAP ), see [2]. Abareshi et al.
[1] investigated the O − D demands through a path flow estimator applying the entropy
maximizing approach.
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Table 1. The notation used in the bi-level model

Notation Definition

N = {v1, ..., vn} The set of nodes
E The set of links
I The index set of client nodes
J The index set of existing facilities
w̄j The observed (target) amount of provided demand by facility vj , j ∈ J
wj The decision variable representing the estimated amount of provided demand by facility vj , j ∈ J
s̄i The target demand of node vi, i ∈ I
si The decision variable representing the estimated demand of node vi, i ∈ I
xij The decision variable representing the amount of demand of node vi, i ∈ I provided by facility vj , j ∈ J
dij Per unit cost to serve the demand of node vi, i ∈ I by facility vj , j ∈ J

In this paper, we propose a bi-objective model to estimate the demands of client nodes
by using the number of visitors to each selected facility and some target values so that the
sum of squared errors and the transportation cost would be minimized. The ϵ-constraint
method is applied to determine weakly efficient solutions to the bi-objective problem where
the efficiency of the estimated solutions is verified by Benson’s method, see [5].

2. Bi-objective demand estimation p-median problem

Consider the network G = (N,E), where the other frequently used notations are listed
in Table (1). Giving the locations of existing facilities with the observed amount of pro-
vided demands by each one and also some target values for nodes’ demands, the problem
formulation to estimate the true values of demands is proposed as follows:

BODEPM : min
x

{
f1(x) =

∑
j∈J(wj − w̄j)

2 +
∑

i∈I(si − s̄i)
2

f2(x) =
∑

i∈I
∑

j∈J dijxij
(2.1)

s.t
∑
i∈I

xij = wj, ∀j ∈ J (2.2)∑
j∈J

xij = si, ∀i ∈ I (2.3)

xij ≥ 0 ∀i ∈ I, j ∈ J,

where the objective functions f1(x) and f2(x) respectively minimize the total sum of squared
errors between the estimated and the target amounts together with the transportation cost.
The constraints (2.2) and (2.3) estimate the nodes’ demands and provided customers by
facilities.

Definition 2.1. A feasible solution x̂ ∈ X is called efficient or Pareto optimal for a bi-
objective problem minx∈X f(x) = (f1(x), f2(x)), if there is no other feasible solution x ∈ X
such that fi(x) ≤ fi(x̂), i = 1, 2 and f(x) ̸= f(x̂). If the inequality is stated strictly, then
the solution is called weakly efficient. The set of all efficient solutions x̂ ∈ X is denoted by
XE and called the efficient set, [5].
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Alternative approaches as the weighted sum and ϵ-constraint methods can be applied to
solve multi-objective programming problems, see [5]. We use the ϵ-constrained method to
obtain the weakly efficient solutions for the bi-objective problem (2.1). The approach is to
minimize one objective subject to the additional constraint that the other objective is less
than a threshold ϵ. The problem to be solved is introduced as one of the following models:

P1 : min f1(x) =
∑
j∈J

(wj − w̄j)
2 +

∑
i∈I

(si − s̄i)
2 (2.4)

s.t.
∑
i∈I

∑
j∈J

dijxij ≤ ϵ1.

P2 : min f2(x) =
∑
i∈I

∑
j∈J

dijxij (2.5)

s.t.
∑
j∈J

(wj − w̄j)
2 +

∑
i∈I

(si − s̄i)
2 ≤ ϵ2.

with the constraints (2.2) and (2.3) and non-negativity conditions.

Theorem 2.2. Let x̂ be an optimal solution of (2.4) or (2.5) for some ϵ = (ϵ1, ϵ2). Then
x̂ is weakly efficient to Problem (2.1), see [5].

Theorem 2.3. The feasible solution x̂ of Problem (2.1) is efficient if and only if there
exists an ϵ = (ϵ1, ϵ2) such that x̂ is an optimal solution for both problems (2.4) and (2.5),
see [5].

Both problems (2.4) and (2.5) should be solved by applying quadratic programming
algorithms such as the active set or interior point methods, see [6]. In the following,
taking some values for ϵ = (ϵ1, ϵ2), different weakly efficient solutions are provided for a
small network where the problems (2.4) and (2.5) are solved by Lingo 17’s solvers. Then,
considering Benson’s method [5], the efficiency of the solutions is investigated.

Example 2.4. Figure (1) represents a small network with 9 nodes where the lengths of
links are given next to them. The amount of dij for each pair (i, j) is considered as the
shortest distance between i and j. The real values of nodes’ demands, demis, are inserted
in Table (2) where considering these values, the ordinary p-median problem is solved for
p = 3. Then, using the selected facilities as well as the provided demands by each one, w̄js,
the weakly efficient solutions for Problem (2.1) are obtained via solving the problems (2.4)
and (2.5) by selecting different vectors ϵ = (ϵ1, ϵ2) where the values of target demands, s̄is,
and their estimated quantities, sis, as well as the target amounts of provided demands by
selected facilities, w̄js, are written in Table (2).
Applying Benson’s method, it is revealed that all the obtained solutions written in Table

(2) are effiecient. In addition, in all cases, the estimated values of provided demands by
selected facilities, wjs, are equal to their target amounts, w̄js, which have been deleted
from Table (2). As Table (2) illustrates, the amounts of nodes’ demands, sis, determined
by Problem (2.5) are generally more accurate estimates for their real values, demi; however,
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Figure 1. The grid network with 9 nodes

Table 2. Data to the network

ϵ1 = 7000, Problem (2.4) ϵ2 = 1000, Problem (2.5)

j\i 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 w̄

2 46.5 113.5 0 0 0 0 0 0 0 49.3 110.7 0 0 0 0 0 0 0 160

6 0 0 76 0 66 91.9 0 6.3 49.9 0 0 74.7 0 64.7 87.4 0 12.1 51 290

7 0 0 0 92.7 0 0 121 56.4 0 0 0 0 96.2 0 0 119.7 54.1 0 270

s 46.5 113.5 76 92.7 66 91.9 121 62.7 49.9 49.3 110.7 74.7 96.2 64.7 87.4 119.7 66.2 51

f1(x) = 1574.310, f2(x) = 7000 f1(x) = 1000, f2(x) = 7260.864

ϵ1 = 5000, Problem (2.4) ϵ2 = 500, Problem (2.5)

2 17.6 142.4 0 0 0 0 0 0 0 52.4 107.6 0 0 0 0 0 0 0 160

6 0 0 74.9 0 64.9 125 0 0 25.2 0 0 73.4 0 63.4 82.3 0 18.8 52.1 290

7 0 0 0 73.9 0 0 152.1 43.9 0 0 0 0 100.2 0 0 118.4 51.4 0 270

s 17.6 142.3 74.9 73.9 64.9 125 152.1 43.9 25.2 52.4 107.6 73.4 100.2 63.4 82.3 118.4 70.2 52.1

dem 50 110 80 100 70 80 100 70 60 50 110 80 100 70 80 100 70 60
s̄ 60 100 70 110 60 70 115 80 55 60 100 70 110 60 70 115 80 55

f1(x) = 11525.26, f2(x) = 5000 f1(x) = 500, f2(x) = 7560.826

decreasing the levels of ϵ1 and ϵ2 results in the rising of the values f1(x) and f2(x) in the
problems (2.4) and (2.5), respectively.
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