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Abstract. This paper presents the delay fractional optimal control problems (DFOCPs)
a modification of the conformable fractional derivative using a novel translation from
Caputo-Fabrizio derivative that the kernel is replaced by a suitable exponential func-
tion. The delay problem is first transformed to an equivalent problem without delay. By
utilizing the necessary optimality conditions and by constructing an error function, an
unconstrained minimization problem is defined. A fractional power series neural network
for solving the minimization problem is presented. Some illustrative numerical examples
are also provided.

1. Introduction

Although, the definition of fractional derivative in [1] has used in many papers and docu-
ments, but there are some disadvantages of this fractional definition. Therefore, an efficient
improvement of this definition with more simplification is very necessary and meaningful.
This is the first novelty of this paper. With help of this new definition of the conformable
fractional derivative, we intend to propose a numerical computational approach based on
artificial neural network (ANN) scheme for solving a class of DFOCPs.

2. A modification of conformable derivative

The conformable fractional derivative is defined as

Tαf(t) = lim
ε→0

f(t + εt1−α)− f(t)

ε
, t ≥ 0. (2.1)
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Authors in [1] claim that definition (2.1) is the simplest, most natural and efficient
definition of fractional derivative. However, one disadvantage of the conformable fractional
derivative may be stated by an example:
Let us consider a fractional differential equation by,











Tαf(t) = g(t, x(t)), t ∈ [0, a), 0 < α ≤ 1,

x(0) = x0,

g(0, x(0)) 6= 0.

(2.2)

There is no answer for fractional differential equation (2.2) when t → 0+. According to
the definition (2.1), derivative of any function at the point t, when t is very close to zero,
is 0 that this is wrong. Therefore, it is necessary to modify the conformable fractional
derivative of (2.1).

By using the stated idea in [2], and by replacing t1−α whit exp(1−α
2−α

t), we define a modi-
fication of the fractional derivative (2.1) as follows:
Definition 2.4. Given a function f : [0,∞) → R. Then the conformable fractional
derivative of f of order α in (2.1) is modified by

Tα(f)(t) = lim
ε→0

f(t + ε exp( 1−α
2−α

t)) − f(t)

ε
, t ≥ 0, α ∈ (0, 1]. (2.3)

Theorem 2.1. Let α ∈ (0, 1] and f, g be α-differentiable at a point t ≥ 0. Then
(a) Tα(af + bg) = aTα(f) + bTα(g), for all a, b ∈ R.

(b) Tα(λ) = 0, for all constant functions f(t) = λ.

(c) Tα(fg) = fTα(g) + gTα(f).

(d) Tα(
f
g
) = gTα(f)−fTα(g)

g2
.

(e) If f is differentiable, Tα(f)(t) = exp( 1−α
2−α

t) df
dt

(t).

3. Problem description and power series neural network

Consider the following problem in which 0 < α ≤ 1,










































Minimize J(x(t), u(t)) = Φ(t, x(t))|tf +
∫ tf
t0
L(t, x(t), x(t− σ), u(t), u(t− τ))dt,

subject to

xα(t) = f1(t, x(t), x(t − σ), u(t), u(t − τ)), t ∈ [t0, tf ],

x(t) = φ(t), t ∈ [t0 − σ, t0],

u(t) = ψ(t), t ∈ [t0 − τ, t0],

g(t, x(t), u(t)) ≤ 0, t ∈ [t0, tf ].

(3.1)

Using a similar procedure in [3] and Pade approximation, the problem (3.1) is thus trans-
formed to a non-delayed problem



















































































Minimize J(x(t), u(t)) = Φ(t, x(t))|tf +
∫ tf
t0
L(t, x(t), z(t), u(t), v(t))dt,

subjectto

xα(t) = f1(t, x(t), z(t), u(t), v(t)),

ẏ(t) = 4
σ
(x(t) − y(t)) − ẋ(t) = f2(t, x(t), y(t), z(t), u(t), v(t)),

ż(t) = 4
σ
(2y(t) − z(t) − x(t)) + ẋ(t) = f3(t, x(t), y(t), z(t), u(t), v(t)),

ẇ(t) = 4
τ
(u(t) −w(t)) − u̇(t) = f4(t, w(t), u(t)),

v̇(t) = 4
τ
(2w(t) − v(t) − u(t)) + u̇(t) = f5(t, w(t), v(t), u(t),

g(t, x(t), u(t)) ≤ 0, t ∈ [t0, tf ],

x(t0) = φ(t0), y(t0) = φ(t0 − σ
2
), z(t0) = φ(t0 − σ),

u(t0) = ψ(t0), w(t0) = ψ(t0 − τ
2
), v(t0) = ψ(t0 − τ).

(3.2)
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Now, for estimating solution of the optimality system of the problem (3.2) the trial solutions
are written as











































































































xT = x0 + (t − t0)nx,

yT = y0 + (t − t0)ny,

zT = z0 + (t − t0)nz ,

wT = w0 + (t− t0)nw ,

vT = v0 + (t − t0)nv ,

λT =
∂Φ

∂x
|tf + (t − tf )nλ,

γT = (t − tf )nγ ,

µT = (t − tf )nµ,

ξT = (t− tf )nξ ,

ηT = (t − tf )nη ,

ζT = (t− tf )nζ ,

uT = nu,







































































































nx =
∑n

i=1 w
i
xt

iα + bix,

ny =
∑n

i=1 w
i
yt

iα + biy ,

nz =
∑n

i=1 w
i
zt

iα + biz ,

nw =
∑n

i=1 w
i
wt

iα + biw ,

nv =
∑n

i=1 w
i
vt

iα + biv ,

nλ =
∑n

i=1 w
i
λ
tiα + bi

λ
,

nγ =
∑n

i=1 w
i
γt

iα + biγ ,

nµ =
∑n

i=1 w
i
µt

iα + biµ,

nξ =
∑n

i=1 w
i
ξ
tiα + bi

ξ
,

nη =
∑n

i=1 w
i
ηt

iα + biη ,

nζ =
∑n

i=1 w
i
ζ
tiα + bi

ζ
,

nu =
∑n

i=1 w
i
ut

iα + biu.

(3.3)

Approximate solutions should be satisfied in optimality conditions of (3.2). We then get


























λαT (t) = −
∂HT

∂xT
, γ̇T (t) = −

∂HT

∂yT
, µ̇T (t) = −

∂HT

∂zT
, ξ̇T (t) = −

∂HT

∂wT

, η̇T (t) = −
∂HT

∂vT
, xαT (t) =

∂HT

∂λT
,

ẏT (t) =
∂HT

∂γT
, żT (t) =

∂HT

∂µT
, ẇT (t) =

∂HT

∂ξT
, v̇T (t) =

∂HT

∂ηT
,
∂HT

∂uT
= 0,

φεFB(ζT ,−g(t, xT (t), uT (t))) = 0, ε→ 0+,
∂Φ

∂xT
|tf = λT (tf ),

(3.4)

where

HT = H(t, xT , yT , zT , wT , vT , λT , γT , µT , ξT , ηT , ζT , uT ), φεFB(p, q) = (p+ q)−
√

p2 + q2 + ε, ε→ 0+.

is the Hamiltonian function of We collocate the optimality system (3.4) on the n points
tk, k = 1, ..., n of the interval [t0, tf ] and then define an optimization problem as

minimizep̃E(p̃) =
1

2

12
∑

i=1

n
∑

k=1

{Ei(tk , p̃)}, (3.5)

where


















































E1(tk , p̃) =

[

λα
T
(tk) +

∂HT

∂xT

]2

, E2(tk , p̃) =

[

γ̇T (tk) +
∂HT

∂yT

]2

, E3(tk , p̃) =

[

µ̇T (tk) +
∂HT

∂zT

]2

,

E4(tk , p̃) =

[

ξ̇T (tk) +
∂HT

∂wT

]2

, E5(tk , p̃) =

[

η̇T (tk) +
∂HT

∂vT

]2

, E6(tk , p̃) =

[

xα
T
(t) −

∂HT

∂λT

]2

,

E7(tk , p̃) =

[

ẏT (tk) −
∂HT

∂γT

]2

, E8(tk , p̃) =

[

żT (tk)−
∂HT

∂µT

]2

, E9(tk , p̃) =

[

ẇT (tk)−
∂HT

∂ξT

]2

,

E10(tk , p̃) =

[

v̇T (tk)−
∂HT

∂ηT

]2

, E11(tk , p̃) =
[

φεFB(ζT ,−g(tk , xT (tk), uT (tk)))
]2
, E12(tk , p̃) =

[

∂HT

∂uT

]2

.

(3.6)

Example 1.

Maximize J =

∫ 20

0
e−0.05t(2u(t) − 0.2x(t)−1u(t)3)dt,

xα(t) = 3x(t)

(

1−
x(t − 0.5)

5
− u3(t)

)

,

x(t) = 2, t ∈ [−0.5, 0], 0 < α ≤ 1,

x(t) ≥ 2, t ∈ [0, 20], u(t) ≥ 0, t ∈ [0, 20].

The optimal trajectory x(t) and optimal control u(t) are shown in Figures 1 and 2.
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Figure 1. Optimal state trajectories of x(t) with α = 1, 0.99, 0.95, 0.89 for
Example 6.3.
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Figure 2. Optimal control functions of u(t) with α = 1, 0.99, 0.95, 0.89 for
Example 6.3.
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