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ABSTRACT. Given a set of demand and potential facility locations and a set of fully available charged 

drones, an agency seeks to locate a pre-specified number of capacitated facilities and assign drones to 

the located facilities to serve the demands. The facilities serve as drone launching sites for distributing 

the resources. The formulation captures the vehicle-drone routing interactions during the drone 

dispatching and collection processes and accounts for drone operation constraints related to flight range 

and load carrying capacity limitations. Each drone makes an one-to-many- to-one trip from the facility 

location to the demand points and back until the battery range is met. The planning period is short-term 

and therefore the recharging of drone batteries is not considered. In this paper, we developed a bi-

objective model for minimizing the total facility construction and transportation costs and maximizing 

the total demand coverage. Furthermore, the bi-objective model is solved by e-constraint method. We 

consider the second objective function as a constraint. 

 

1. INTRODUCTION 
Last mile logistics has become a popular area of interest for retailers. Companies are always 

searching for fast and cost-efficient ways to deliver goods to their customers. Several 

companies like Amazon, Google, UPS, and Flytrex are evaluating the potential use of 

Unmanned Aerial Vehicles (UAVs) or drones for commercial service or package deliveries 

[1]. Drones are not restricted by the availability of existing infrastructure and therefore can 

lead to improved last-mile efficiency, safety, and reliability. Drones are particularly suitable 

for emergency applications like search and rescue [1], deliveries of critical medical supplies 

post-disaster or for emergency response. 

             routing and scheduling leading to several interesting variants of the traveling salesman and   

vehicle routing problems. Murray and Chu [7] studied the flying sidekick traveling salesman problem 

(FSTSP) where a drone and a truck deliver in collaboration to a set of customers. The drone takes-off 

from the truck, makes the delivery, and rendezvous back with the truck at a different location. Murray 

and Chu [7] also proposed the parallel drone scheduling traveling salesman problem (PDSTSP) where 

a set of UAVs and a truck make deliveries from a single depot to customers. Agatz et al. [1] denoted 

the FSTSP as Traveling Salesman Problem with Drones (TSPD). Ha et al. [6] focused on the min-cost 

TSPD variant of Murray and Chu [7] FSTSP and developed a greedy randomized adaptive search 

procedure which builds TSPD routes from TSP routes. Dayarian et al. [4] studied the dynamic and 

multiple vehicles and drones variant of Murray and Chu [7] PDSTSP. In contrast to the above works, 

Chauhan et al. [3] consider a drone only delivery system and do not consider truck deliveries as this is 

the case for medical supplies. They proposed an integer linear programming formulation with the 

objective of maximizing coverage while explicitly incorporating the drone energy consumption and 
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range constraints. We developed a bi-objective model for minimizing the total facility construction 

and transportation costs and maximizing the total demand coverage. nowadays facility construction 

and transportation costs are in important issue for companies that has not been addressed in other 

articles. we considered the total facility construction and transportation costs and developed the bi-

objective model for minimizing the total facility construction and transportation costs and maximizing 

the total demand coverage. We also model the distance range constraints that is dependent in battery 

capacity.                  
2. Problem formulation 

This section presents the integer linear programming formulation for facility location problem 

with range constrained drones. At the beginning of the planning period, an agency is given a set of 

demand locations I each having demand 𝒘𝒊, a set of potential facility locations J and set of available 

fully-charged drones 𝑲. the agency's goal is to locate 𝑷 facilities to maximize the demand served 

and minimize the total cost. The agency will allocate resource of mass 𝒖𝒋 can be viewed as the 

capacity of the facility. The capacity of a facility corresponds to the maximum amount of demand 

which can be served from that facility in a period of time. The limiting factor for the capacity 

in practice would arise from the maximum mass of resources which can be stored at each facility, 

equipment and building characteristics, staffing levels, etc. The agency will also assign drones to 

each open facility. The facilities serve as drone launching sites for distributing the resources while 

respecting the facility capacity and drone range constraints. In this paper, we consider the cost of 

transportation of packages and drones from warehouses to these locations. We also assume that 

the demand during each planning horizon is smaller than the capacity of each drone. As we are 

looking at a relatively small time frame, we do not consider recharging of drone batteries during 

the planning period. We assume that the drone batteries are recharged overnight or in-between 

planning periods [5]. The notation used in the formulation is given below. 

 

Sets 

 

𝑰  Set of all demand locations indexed by 𝒊 

𝑱  Set of all potential facility locations indexed by 𝒋 

𝑲  Set of available drones indexed by 𝒌 

𝑺  The set of disruption events 

 

Parameters 
 

𝒇𝒋  The construction cost of facility 𝒋 

𝒄𝒊𝒋  Unit-price of transportation from the facility j to demand 𝒊 

𝒅𝒊𝒋  Travel distance between demand point i and facility 𝒋 

𝒘𝒊  Demand at location 𝒊 

𝒖𝒋  Capacity of each located facility 𝒋 

𝒐𝒊𝒋  The added costs from facility 𝒋 to demand 𝒊 when workers predict the nonoccurrence of a   

disruption event, which consequently occurs 

𝒍𝒊𝒋  The added costs when workers predict the occurrence of a disruption event and the forecast costs 

from facility 𝒋 to demand 𝒊 

𝒑  Maximum number of facilities 

𝒇𝒋  𝒒 ∈ [0;  1] is the ratio between the transportation costs and the added prediction costs on the 

occurrence of a disruption event. 

𝑩  Battery capacity of each drone 

β The amount of energy consumed in a distance unit 

𝒎𝒔  1 if disruption event occurrence 0 otherwise(∀𝑠 ∈  𝑆) 

𝒗𝒊𝒋𝒔  1 if disruption event(s) occurrence is predicted 0 otherwise (∀𝑖 ∈  𝐼;  ∀𝑗 ∈  𝐽;  ∀𝑠 ∈  𝑆) 
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Decision variables 

 

𝒙𝒊𝒋𝒌 1, if customer i ∈ I is served by the kth drone of plant j ∈ J, and 0 otherwise 

𝒚𝒋     1, if the facility is located at j ∈ J , and 0, otherwise 

𝒛𝒋𝒌   1, if the kth drone is assigned to facility j ∈ J , and 0, otherwise. 

 

 

  

The objective (1) is to maximize the demand served. The objective (2) is to minimize the total 

facilities construction and transportation costs. Constraint (3) ensures that each demand location is 

covered at most once. Eq. (4) restricts the number of facilities located to be less than or equal to p. 

Constraint (5) ensures that vehicles are assigned only to located facilities. Constraint (6) ensures that 

each drone is assigned to at most one open facility. Constraint (7) forces the demand served by each 

located facility to be less than or equal to the capacity of the facility. Constraint (8) enforces battery 

range constraints on all the drones. Constraint (9) ensures that the prediction cost is no more than half 

the transportation cost. Constraint (10) corresponds to variable definition constraints and forces all 

decision variables to be binary. 

There exist several solution methods that have been proposed for bi-objective programming. They 

can be classiffied to five main categories: scalar methods, interactive methods, fuzzy methods, meta-

heuristic methods, and decision aided methods [2 and 8]. The conventional bi-objective optimization 

techniques widely used in practice including -constraint, weighted sum, weighted metric, goal 

programming and lexicographic, etc. Haimes et al.[6] presented the 𝜖-constraint method, they 

proposed that one of the objective functions is optimized while other objective functions are 

converted into constraints with allowable bounds. The problem is stated as follows: 

 

 
 

Therefore, a set of Pareto-optimal solutions can be obtained by changing the values of  𝜀. 
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3. Main results 

Example 3.1. let  |𝐼| =  5, |𝐽| =  4, |𝐾|  =  3, |𝑆|  =  1, 𝑝 = 3,   𝛽 =  2,   𝑞 = .5,   𝐵 = 100. 
 

𝑐11 =  2, 𝑐12 =  3, 𝑐13 =  2, 𝑐14 =  3, 𝑐21 =  3, 𝑐22 =  4, 𝑐23 =  3, 𝑐24 =  4, 𝑐31 =  2, 𝑐32 =  3 
𝑐33 =  2, 𝑐34 =  3, 𝑐41 =  4, 𝑐42 =  5, 𝑐43 =  4, 𝑐44 =  5, 𝑐51 =  5, 𝑐52 =  6, 𝑐53 =  5, 𝑐54 =  6 

 
𝑑11 =  3, 𝑑12 =  5, 𝑑13 =  7, 𝑑14 =  8, 𝑑21 =  4, 𝑑22 =  7, 𝑑23 =  8, 𝑑24 =  10, 𝑑31 =  5, 𝑑32 =  8, 

𝑑33 =  9, 𝑑34 =  11, 𝑑41 =  4, 𝑑42 =  5, 𝑑43 =  4, 𝑑44 =  5, 𝑑51 =  7, 𝑑52 =  10 , 𝑑53 =  11,
𝑑54 =  13 

 
𝑈 =  (𝑢𝑗)  =  [80;  150;  60;  45], 𝑊 =  (𝑤𝑖)  =  [35;  40;  25;  25;  10] 

 
𝐿 =  (𝑙𝑖𝑗)  =  𝑂 =  (𝑜𝑖𝑗)  =  𝐶 =  (𝑐𝑖𝑗 ), 𝐹 =  (𝑓𝑗)  =  [80;  150;  60;  45], 𝑣111 =  1 

 
We assume that "2 = 2000 and solve this example at aimms and obtain 

 
𝑦1 =  1, 𝑦3 =  1, 𝑧11 =  1, 𝑧32 =  1, 𝑥332 =  1, 𝑥532 =  1, 𝑥111 =  1, 𝑥211 =  1, 𝑍1 =  80. 

 

4. Conclusions 

Today the cost of building facilities is an important issue for companies that have not been taken into 

consideration, and only transportation costs have been taken into account without taking into account 

the distributiond disruption. in this paper, we developed a bi-objective model for minimizing the total 

facility construction and transportation costs and maximizing the total demand coverage. also the 

distributiond disruption is seen as distribution risk as distribution disruption events are unplanned. As 

real-world drone-based deliveries have already started being implemented in the field, it is necessary 

to study facility location for drones not only for economic purposes but also for social/humanitarian 

benefit. Drone deliveries tend to be time-sensitive, e.g. medical supplies, and or subject to unexpected 

changes in weather conditions. Hence, solution times are as important as solution quality. In this 

research the bi-objective model is solved by e-constraint method. We consider the second objective 

function as a constraint and solve it at aimms. 
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