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Abstract. In this paper, we decomposed the vector of objective functions of the multiob-
jective optimization problem into a collection of smaller-sized subproblems. In describing
the relationships between solutions of the original and decomposed problems, it is shown
that the set of equitably efficient solutions of the subproblems is contained within the
set of efficient solutions for the original problem. Furthermore, by using the concept of
P -equitable efficiency two new multiobjective optimization problems are presented to co-
ordinate equitably efficient solutions of subproblems.

1. Introduction

The equitable preference was first known as the generalized Lorenz dominance [2, 4].
Kostreva and Ogryczak [1] are the first ones who introduced the concept of equitability into
multiobjective programming. In equitable multiobjective optimization all the objectives
are uniformly optimized, but in some cases the decision maker believes that some of them
should be uniformly optimized according to the importance of objectives. To solve this
problem in this paper, the original problem is decomposed into a collection of smaller
subproblems, according to the decision maker, and the subproblems are solved by the
concept of P -equitable efficiency. For more details, the reader may refer to [3].

Throughout this article the following notation is used. Let Rm be the Euclidean vector
space and y′, y′′ ∈ Rm. y′ 5 y′′ denotes y′i ≤ y′′i for all i = 1, 2, · · · ,m. y′ < y′′ denotes
y′i < y′′i for all i = 1, 2, · · · ,m. y′ ≤ y′′ denotes y′ 5 y′′ but y′ 6= y′′.
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Consider a decision problem defined as an optimization problem with m objective func-
tions. For simplification we assume, without loss of generality, that the objective functions
are to be minimized. The problem can be formulated as follows:

min (f1(x), f2(x), · · · , fm(x)) ,

subject to x ∈ X, (1.1)

where x denotes a vector of decision variables selected from the feasible set X and f(x) =
(f1(x), f2(x), · · · , fm(x)) is a vector function that maps the feasible set X into the objective
(criterion) space Rm. We refer to the elements of the objective space as outcome vectors. An
outcome vector y is attainable if it expresses outcomes of a feasible solution, i.e., y = f(x)
for some x ∈ X. The set of all attainable outcome vectors will be denoted by Y = f(X).

2. Main results

In this section, we will introduce the concept of P -equitably efficient solution by decom-
position of objective functions.

Let P ⊂ {1, 2, · · · ,m} and denote by fP = (fj)j∈P the objective functions vector that
only contains fj, j ∈ P . Suppose that n be a positive integer such that n ≤ m. If
P = {P1, P2, . . . , Pn} is a partition of {1, 2, · · · ,m}, then the multiobjective problem

min fPk
(x) (k = 1, 2, · · · , n)

subject to x ∈ X (2.1)

is called a subproblem of the multiobjective problem (1.1) and the collection of all these
subproblems is called a decomposition of the multiobjective problem (1.1).

Definition 2.1. Let y ∈ Rm.

1. Let Θ : Rm → Rm be the ordering map defined as Θ(y) = (θ1(y), θ2(y), · · · , θm(y)),
where θ1(y) ≥ θ2(y) ≥ · · · ≥ θm(y), θi(y) = yτ(i) for i = 1, 2, · · · ,m, and τ is a
permutation of the set {1, 2, · · · ,m}.

2. Let Θ : Rm → Rm be the cumulative ordering map defined as

Θ(y) = (θ̄1(y), θ̄2(y), · · · , θ̄m(y)),

where θ̄i(y) =
∑i

j=1 θj(y) for i = 1, 2, · · · ,m.

Definition 2.2. Let y′, y′′ ∈ Y be two outcome vector. We say that y′, P -equitably
dominates y′′ and denoted by y′ ≺P y′′, iff

Θ(y′Pk
) 5 Θ(y′′Pk

) (k = 1, 2, · · · , n),

and Θ(y′Pk
) ≤ Θ(y′′Pk

) for some k ∈ {1, 2, · · · , n}.

Definition 2.3. We say that outcome vector y ∈ Y is P -equitably nondominated iff there
does not exist y′ ∈ Y such that y′ ≺P y. Also we say that feasible solution x ∈ X is a P -
equitably efficient solution of the multiobjective problem (1.1) iff y = f(x) is P -equitably
nondominated.



DECOMPOSITION OF THE MULTIOBJECTIVE OPTIMIZATION PROBLEM AND ... 3

Note that when n = 1 namely P1 = {1, 2, · · · ,m}, the relation ≺P becomes the equitable
efficiency relation, ≺e. The above definition permits one to express P -equitable efficiency
for problem (1.1) in terms of the standard efficiency for the multiobjective problem

min
{(

Θ(fP1(x)),Θ(fP2(x)), · · · ,Θ(fPn(x))
)

: x ∈ X
}
. (2.2)

Theorem 2.4. The feasible solution x ∈ X is a efficient solution of the multiobjective
problem (2.2) if and only if it is a P -equitably efficient solution of the multiobjective problem
(1.1).

Remark 2.5. If n = 1 namely P1 = {1, 2, · · · ,m}, we have Corollary 2.2 from [1]. So, the
feasible solution x ∈ X is an efficient solution of the multiobjective problem

min
{

Θ(f(x)) : x ∈ X
}
, (2.3)

if and only if it is an equitably efficient solution of the multiobjective problem (1.1).

Note that if x is a P -equitably efficient solution of multiobjective problem (1.1), then
it is also Pareto-optimal solution for this problem. Therefore, to reduce Pareto-optimal
solution, we can use P -equitably efficient solution.

Theorem 2.6. Suppose that k ∈ {1, 2, · · · , n}. If
∑

j∈Pk
fj is an injective function and if

x ∈ X is an efficient solution of the multiobjective problem

min{Θ(fPk
(x)) : x ∈ X}, (2.4)

then it is an efficient solution of the multiobjective problem (2.2).

According to Remark 2.5, each equitably efficient solution of the multiobjective problem
(2.1) is also an efficient solution of the multiobjective problem (2.4). By using Theorem
2.6 and Theorem 2.4, the following result is obtained.

Corollary 2.7. Suppose that k ∈ {1, 2, · · · , n}. If
∑

j∈Pk
fj is an injective function and

if x ∈ X is an equitably efficient solution of the multiobjective problem (2.1), then it is a
P -equitably efficient solution of the multiobjective problem (1.1).

Since the set of efficient solutions of the multiobjective problem (2.2) is contained within
the set of efficient solution of the multiobjective problem (1.1), and the set of efficient
solutions of the multiobjective problem (2.2) contains the set of equitably efficient solutions
of the multiobjective problem (2.1), is obtained from solving the multiobjective problem
(2.4) for k = 1, 2, · · · , n, we can use efficient solutions of the multiobjective problem (2.2)
to coordinate equitably efficient solutions of subproblems.

Scalarization is one of the most common approaches used to solve a multiobjective prob-
lem. Scalarizing functions are used to transform a given multiobjective problem into a
single objective optimization problem, by aggregating the objectives of a multiobjective
problem into a single objective. Typical solution concepts for multiobjective problems are
defined by scalarizing functions s : Y → R to be minimized. Thus the multiobjective
problem (1.1) is replaced with the minimization problem

min{s(f(x)) : x ∈ X}. (2.5)
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The preference relation corresponding to the problem (2.5) is defined as follows:

y′ � y′′ ⇔ s(y′) ≤ s(y′′).

For any strictly convex, increasing function g : R → R, the scalarizing function is defined
by

s(y) =
m∑
i=1

g(yi)

is a strictly monotonic and strictly Schur-convex function [4]. It has been shown in Propo-
sition 3.1 from [1], the preference relation corresponding to this scalarizing function is an
equitable rational preference relation. Also, every optimal solution of the problem (2.5) is an
equitably efficient solution of the original multiobjective problem. Similarly, if gk : R→ R
for k = 1, 2, · · · , n be strictly convex, increasing function, then the optimal solution of the
problem

min

{∑
i∈Pk

gk(fi(x)) : x ∈ X

}
, (2.6)

is an equitably efficient solution of the multiobjective problem (2.1).

Theorem 2.8. Suppose that k ∈ {1, 2, · · · , n} and x ∈ X is a feasible solution. If∑
i∈Pk

(gk ◦ fi) is an injective function and if x is an optimal solution of the problem (2.6)
then it is an efficient solution of the multiobjective problem

min

{(∑
i∈P1

g1(fi(x)),
∑
i∈P2

g2(fi(x)), · · · ,
∑
i∈Pn

gn(fi(x))

)
: x ∈ X

}
. (2.7)

Finally, we will generate the P -equitably efficient solutions by introducing certain scalar-
izing functions.

Theorem 2.9. Let x ∈ X be a feasible solution and let gk : R → R be a strictly convex,
increasing function for k = 1, 2, · · · , n. If x is an efficient solution of the multiobjective
problem (2.7), then it is a P -equitably efficient solution of the multiobjective problem (1.1).

Remark 2.10. If n = 1 namely P1 = {1, 2, · · · ,m}, we have Corollary 3.1 from [1].

Since the set of efficient solutions of the multiobjective problem (2.7) is contained within
the set of efficient solutions the multiobjective problem (1.1), and the set of efficient solu-
tions of the multiobjective problem (2.7) contains the set of equitably efficient solutions of
the multiobjective problem (2.1), is obtained from solving problem (2.6) for k = 1, 2, · · · , n,
we can use efficient solutions of the multiobjective problem (2.7) to coordinate equitably
efficient solutions of subproblems.
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