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ABSTRACT. Here, using a local conjugate gradient (CG) method and random perturbations, a
global optimization algorithm suggested for unconstrained optimization (UO) problems. For con-
jugate parameter in CG, the Polyak-Ribiere parameter and for random perturbations the Gaussian
perturbation centred with zero mean and covariance δ 2

k In, in which δk is decreasing slowly enough,
are used. We give some numerical experiments on a set of UO problems.

1. INTRODUCTION

Unconstrained optimization (UO) problems arise in a wide range of applications, for example
see [1, 2]. The general form of UO problems is as following:

min f (x) (1.1)
x ∈ Rn

where f : Rn → R is a smooth non-linear function and its gradient is available. The iterative
algorithms for solving the UO problems construct a sequence of solutions as {xk}, with an initial
point x0 ∈ Rn, by following recursive formula [3]:

xk+1 = xk + sk ,k = 0,1,2, . . . (1.2)

where sk is called step at k-th iteration. There are two general approaches for computing the
steps in (1.1), including line search (LS) and trust region (TR), which both of them use quadratic
approximations of the objective function. In TR approach, at each iterate, the step is computed
by solving a sequence of sub-problems of quadratic constrained model, iteratively, [3, 4]. For LS
approach the step at the k−th iteration is computed as sk = αkdk, where dk is the search direction
and αk is the step length along this direction. CG methods are the most well known methods in
LS for low memory and less computations.
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Global optimal solution of the UO problems is important in many applications, see [6]. It
demands powerful solvers in terms of time and memory, which named global optimization (GO)
algorithms. There are two categories for the solution of GO problems, consist of stochastic and
deterministic algorithms. The first is based on heuristic procedures such as genetic algorithm
(GA), simulated annealing (SA) particle swarm optimization (PSO), see [7]. These techniques
usually are simple but they need very large number of evaluation points of objective function and
so are slow specially for the large scale UO problems. However, deterministic algorithms such
as branch and bound method have some disadvantages such as computational difficulties as the
dimension of the problem increased.

Here we proposed a global algorithm for UO problem, (1.1), based on CG method as a local
deterministic algorithms and a perturbation technique, inspired by [8], which used to escape from
the local solutions. In CG methods, a sequence of points {xk}k≥0 ⊂ Rn is generated, beginning
from an initial guess x0 ∈Rn, which a new feasible point xk+1 is generate form xk by the iterative
formula (1.2), where the search direction is as following:

d0 =−g0, dk+1 =−gk+1 +βkdk, k = 0,1,2, . . . (1.3)

where gk = ∇ f (xk) and βk is a scaler called the CG update parameter. To achieve global so-
lution, the solution of the CG method should be perturbed to avoid premature convergence to
local minimum. Therefore, the last point, obtained by CG method, is perturbed by adding a suit-
able chosen stochastic term. The new sequence noted {Xk}k≥0 ⊂ Rn is given by the following
recursive formula [5]: {

X0 = x0

Xk+1 ∈ argmin{ f (yi
k), i = 0,1, . . . ,m}

(1.4)

That

yi
k =

{
G(Xk), i = 0
G(Xk)+ρ i

k, i = 1,2, . . . ,m
(1.5)

Where G(Xk) is the point obtained by a few iterations of the procedure (1.2)-(1.3), starting from
Xk, and ρ i

k for i = 0,1, . . . ,m are the stochastic perturbations, where m is as integer parameter.
Here, based on special random variables for ρ i

k in (1.5) and Polyak-Ribiere CG parameter, we
propose a new GO algorithm for UO problems.

2. A GLOBAL OPTIMIZATION ALGORITHM

In this section we propose a new GO algorithm based the procedure in (1.4)-(1.5). The idea
is to perturb the solution obtained by the procedure G(.) in (1.5), which is obtained by Polyak-

Ribiere method with the CG parameter as β PR
k =

gT
k yk−1

∥gk−1∥2 , where yk−1 = gk − gk−1. Also, in CG
method, we use the step length with a procedure named fixed step-length or without line search
proposed by Sun and Zhang [9], where

αk =
gT

k dk

Lk∥dk∥2 (2.1)
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where Lk is a random parameter based on Lipschitz condition, which denoted by L in the follow-
ing, see [5]. For perturbation, the normal Gaussian distribution, with zero mean and covariance
δ 2

k In, is used, i.e the random vectors are chosen as ρ i
k ∼N (0,δ 2

k In) in (1.5), where δk are decreas-
ing parameters. Each iterate of the proposed algorithm consist of two main phase: Local phase
and Perturbation phase. Local phase, with at most Jmax iteration, used to achieve an approximate
local solution and the perturbation phase, using m perturbation vectors, applied to escape from
local point and search different area of the feasible domain for finding the global optimal solu-
tion. Also the maximum of the iteration in algorithm defined by the Kmax, as a parameter. The
local phase can break after at most Jmax iterate or when we achieve to a appropriate solution.

Here, we present the proposed algorithm, which is named GPR, as follows: In GPR algorithm,

Algorithm 1 GPR algorithm

{Step 0:}(Initialization) Input the values X0 = x0, Kmax, Jmax, m, L, ε and the sequence
{δk}k≥0. Also let k = 0.
{Step 1:} Let j = 0 and X0

k = xk.
{Step 2:}(Local phase) For j = 0 until Kmax repeat:
if ∥∇ f (X j

k )∥ ≤ ε break,
else Calculate d j

k , using (1.3), and α j
k , using (2.1), and let X j+1

k = X j
k +α j

k d j
k .

{Step 3:}(Perturbation phase) Generate m perturbation vectors pi
k, i = 1,2, . . . ,m by com-

mon law N (0,δ 2
k In).

{Step 4:} Let Yk = X j
k and Sk = {Yk}∪{Yk + pi

k, i = 1,2, . . . ,m}.
{Step 5:} Select Xk+1 ∈ argminy∈Sk

f (y).
{Step 6:} Set k = k+1. If k = Kmax, stop and let x∗ = Xk, else go to step 1.

Algorithm 1, α j
k , d j

k and X j
k are the step length, search direction and the solution of the j−th

iterate of the local phase in k−th iterate of the main loop.

3. NUMERICAL EXPERIMENTS

In this section, we report the numerical results of ten test functions with our proposed GPR al-
gorithm, which is reported in Table 1. Also, the results are compared with the Genetic algorithm.
The algorithms are implemented in Matlab R2011a environment on a Notebook with Windows
7 Ultimate, CPU 2.53 GHz and 4.00 GB RAM. In GPR algorithm, we set the parameters as
ε = 10−6, m = 10, Kmax = 100, Jmax = 5, L = 2 and δk =

2
k+1 . The results of the GPR and

Genetic algorithms, specified in the Table 2, where the values MErrorx and MErrory are the average
error of the numerical results after 20 runs for each test problem. The test functions F2, F4 and
F6 are multi-modal functions. From the last row of the Table 2, it is clear that GPR algorithm is
more accurate than the Genetic algorithm in point of the summation of the errors.
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TABLE 1. The rules of the test functions and the initial points of GPR algorithm.

Function Function rule x0
F1 ∥x∥2 [2,3]
F2 2− (e−x2

+2e−(x−3)2
) 1

F3 Rosenbrock(n = 4) [0.9,0.9,0.9,0.9]
F4 xcos(x) 0.7
F5 Rosenbrock(n = 2) [0.9,0.9]
F6 x(x−1)(2x−3)(x−4)(x−5)(x−6) 2
F7 1+(x1 + x2 +1)2(19−14x1 +3x2

1 −14x2 +6x1x2 +3x2
2) [0.1,0.9]

F8 0.25x4
1 −0.5x2

1 +0.1x1 +0.5x2
2 [−1,0]

F9 4x2
1 −2.1x4

1 +
1
3x6

1 + x1x2 −4x2
2 +4x4

2 [0.8,−0.6]
F10 4x2

1 −4x1x2 +2x2
2 [0.001,0.001]

TABLE 2. The numerical results of the GPR and Genetic algorithms for test func-
tions in Table 1.

GPR algorithm Genetic algorithm
Function MErrorx MErrory MErrorx MErrory

F1 4.3717×10−9 1.9267×10−17 8.9997×10−3 8.0946×10−5

F2 1.8×10−3 6.58×10−6 2.6598×10−3 1.2205×10−4

F3 3.93×10−2 3.86×10−4 9.6986×10−1 8.8297×10−1

F4 1.85×10−5 2.86×10−5 1.7323×10−3 3.4258×10−5

F5 1.22×10−2 3.6147×10−5 2.8013×10−1 2.5385×10−2

F6 1.7067×10−5 3.25×10−5 4.5648×10−3 2.2991×10−3

F7 8.5367×10−9 4.9167×10−14 9.5689×10−1 2.9980
F8 1.9473×10−5 1.3926×10−5 4.7958×10−2 1.8663×10−3

F9 6.05×10−5 2.85×10−5 2.7395×10−2 4.9736×10−3

F10 5.6865×10−9 2.4969×10−17 4.9584×10−2 1.9045×10−3

Sum of Errors 5.35×10−2 5.32×10−4 2.35 3.93
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