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Abstract. Here, using a local conjugate gradient (CG) method and random perturbations,
a global optimization algorithm suggested for unconstrained optimization (UO) problems.
For the conjugate parameter in CG, the Polyak-Ribiere parameter and for random pertur-
bations the Gaussian perturbation centered with zero mean and covariance δ 2

k In, in which
δk is decreasing slowly enough, are used. We give some numerical experiments on a set of
UO problems.

1. Introduction
Unconstrained optimization (UO) problems arise in a wide range of applications, for

example see [2, 1]. The general form of UO problems is as follows:
min f (x) (1.1)
x ∈ Rn

where f :Rn →R is a smooth non-linear function and its gradient is available. The iterative
algorithms for solving the UO problems construct a sequence of solutions as {xk}, with an
initial point x0 ∈ Rn, by following recursive formula [3]:

xk+1 = xk + sk ,k = 0,1,2, . . . (1.2)
where sk is called step at k-th iteration. There are two general approaches for computing
the steps in (1.1), including line search (LS) and trust region (TR), which both of them use
quadratic approximations of the objective function. In TR approach, at each iterate, the
step is computed by solving a sequence of sub-problems of quadratic constrained model,
iteratively, [3, 9]. For LS approach the step at the k−th iteration is computed as sk = αkdk,
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where dk is the search direction and αk is the step length along this direction. CG methods
are the most well known methods in LS for low memory and Fewer computations.

Global optimal solution of the UO problems is important in many applications, see [4].
It demands powerful solvers in terms of time and memory, which named global optimiza-
tion (GO) algorithms. There are two categories for the solution of GO problems, consist
of stochastic and deterministic algorithms. The first is based on heuristic procedures such
as genetic algorithm (GA), simulated annealing (SA) particle swarm optimization (PSO),
see [5]. These techniques usually are simple but they need a very large number of eval-
uation points of the objective function and so are slow specially for the large scale UO
problems. However, deterministic algorithms such as branch and bound method have some
disadvantages such as computational difficulties as the dimension of the problem increased.

Here we proposed a global algorithm for UO problem, (1.1), based on CG method as
a local deterministic algorithms and a pertubation technique, inspired by [7], which used
to escape from the local solutions. In CG methods, a sequence of points {xk}k≥0 ⊂ Rn

is generated, beginning from an initial guess x0 ∈ Rn, which a new feasible point xk+1 is
generate form xk by the iterative formula (1.2), where the search direction is as following:

d0 =−g0, dk+1 =−gk+1 +βkdk, k = 0,1,2, . . . (1.3)

where gk = ∇ f (xk) and βk is a scaler called the CG update parameter. To achieve global
solution, the solution of the CG method should be perturbed to avoid premature conver-
gence to local minimum. Therefore, the last point, obtained by CG method, is perturbed
by adding a suitable chosen stochastic term. The new sequence noted {Xk}k≥0 ⊂Rn is given
by the following recursive formula [8]:{

X0 = x0

Xk+1 ∈ argmin{ f (yi
k), i = 0,1, . . . ,m}

(1.4)

That

yi
k =

{
G(Xk), i = 0
G(Xk)+ρ i

k, i = 1,2, . . . ,m
(1.5)

Where G(Xk) is the point obtained by a few iterations of the procedure (1.2)-(1.3), starting
from Xk, and ρ i

k for i = 0,1, . . . ,m are the stochastic perturbations, where m is an integer
parameter. Here, based on special random variables for ρ i

k in (1.5) and Polyak-Ribiere CG
parameter, we propose a new GO algorithm for UO problems.

2. A Global optimization algorithm
In this section we propose a new GO algorithm on based the procedure in (1.4)-(1.5). The

idea is to perturb the solution obtained by the procedure G(.) in (1.5), which is obtained
by Polyak-Ribiere method with the CG parameter as β PR

k =
gT

k yk−1
∥gk−1∥2 , where yk−1 = gk−gk−1.

Also, in CG method, we use the step length with a procedure named fixed step-length or
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without line search proposed by Sun and Zhang [6], where

αk =
gT

k dk

Lk∥dk∥2 (2.1)

where Lk is a random parameter based on Lipschitz condition, which denoted by L in the
following, see [8]. For perturbation, the normal Gaussian distribution, with zero mean and
covariance δ 2

k In, is used, i.e the random vectors are chosen as ρ i
k ∼ N (0,δ 2

k In) in (1.5),
where δk are decreasing parameters. Each iterate of the proposed algorithm consist of
two main phases: Local phase and Perturbation phase. Local phase, with at most Jmax
iteration, used to achieve an approximate local solution and the perturbation phase, using
m perturbation vectors, applied to escape from local point and search different areas of the
feasible domain for finding the global optimal solution. Also the maximum of the iteration
in algorithm defined by the Kmax, as a parameter. The local phase can break after at most
Jmax iterate or when we achieve to an appropriate solution.

Here, we present the proposed algorithm, which is named GPR, as follows: In GPR

Algorithm 1 GPR algorithm
{Step 0:}(Initialization) Input the values X0 = x0, Kmax, Jmax, m, L, ε and the sequence
{δk}k≥0. Also let k = 0.
{Step 1:} Let j = 0 and X0

k = xk.
{Step 2:}(Local phase) For j = 0 until Kmax repeat:
if ∥∇ f (X j

k )∥ ≤ ε break,
else Calculate d j

k , using (1.3), and α j
k , using (2.1), and let X j+1

k = X j
k +α j

k d j
k .

{Step 3:}(Perturbation phase) Generate m perturbation vectors pi
k, i = 1,2, . . . ,m by

common law N (0,δ 2
k In).

{Step 4:} Let Yk = X j
k and Sk = {Yk}∪{Yk + pi

k, i = 1,2, . . . ,m}.
{Step 5:} Select Xk+1 ∈ argminy∈Sk

f (y).
{Step 6:} Set k = k+1. If k = Kmax, stop and let x∗ = Xk, else go to step 1.

algorithm, Algorithm 1, α j
k , d j

k and X j
k are the step length, search direction and the solution

of the j−th iterate of the local phase in k−th iterate of the main loop.

3. Numerical experiments
In this section, we report the numerical results of ten test functions with our proposed

GPR algorithm, which is reported in Table 1. Also, the results are compared with the
Genetic algorithm. The algorithms are implemented in Matlab R2011a environment on a
Notebook with Windows 7 Ultimate, CPU 2.53 GHz and 4.00 GB RAM. In GPR algorithm,
we set the parameters as ε = 10−6, m = 10, Kmax = 100, Jmax = 5, L = 2 and δk =

2
k+1 . The

results of the GPR and Genetic algorithms, specified in the Table 2, where the values
MErrorx and MErrory are the average error of the numerical results after 20 runs for each test
problem. The test functions F2, F4 and F6 are multi-modal functions. From the last row
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of Table 2, it is clear that GPR algorithm is more accurate than the Genetic algorithm in
point of the summation of the errors.

Table 1. The rules of the test functions and the initial points of GPR algorithm.

Function Function rule x0
F1 ∥x∥2 [2,3]
F2 2− (e−x2

+2e−(x−3)2
) 1

F3 Rosenbrock(n = 4) [0.9,0.9,0.9,0.9]
F4 xcos(x) 0.7
F5 Rosenbrock(n = 2) [0.9,0.9]
F6 x(x−1)(2x−3)(x−4)(x−5)(x−6) 2
F7 1+(x1 + x2 +1)2(19−14x1 +3x2

1 −14x2 +6x1x2 +3x2
2) [0.1,0.9]

F8 0.25x4
1 −0.5x2

1 +0.1x1 +0.5x2
2 [−1,0]

F9 4x2
1 −2.1x4

1 +
1
3x6

1 + x1x2 −4x2
2 +4x4

2 [0.8,−0.6]
F10 4x2

1 −4x1x2 +2x2
2 [0.001,0.001]

Table 2. The numerical results of the GPR and Genetic algorithms for test
functions in Table 1.

GPR algorithm Genetic algorithm
Function MErrorx MErrory MErrorx MErrory

F1 4.3717×10−9 1.9267×10−17 8.9997×10−3 8.0946×10−5

F2 1.8×10−3 6.58×10−6 2.6598×10−3 1.2205×10−4

F3 3.93×10−2 3.86×10−4 9.6986×10−1 8.8297×10−1

F4 1.85×10−5 2.86×10−5 1.7323×10−3 3.4258×10−5

F5 1.22×10−2 3.6147×10−5 2.8013×10−1 2.5385×10−2

F6 1.7067×10−5 3.25×10−5 4.5648×10−3 2.2991×10−3

F7 8.5367×10−9 4.9167×10−14 9.5689×10−1 2.9980
F8 1.9473×10−5 1.3926×10−5 4.7958×10−2 1.8663×10−3

F9 6.05×10−5 2.85×10−5 2.7395×10−2 4.9736×10−3

F10 5.6865×10−9 2.4969×10−17 4.9584×10−2 1.9045×10−3

Sum of Errors 5.35×10−2 5.32×10−4 2.35 3.93
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