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Abstract. The present scientific attempt is devoted to investigating the nonconvex op-
timization problems (NCOPs) utilizing the concepts of projection Recurrent Neural Net-
works (RNN)s. For this purpose, the original problem is reformulated into a m-th power
form. Then, the Karush–Kuhn–Tucker (KKT) optimality conditions are provided. The
KKT conditions are used to propose the RNN model. Besides, the Lyapunov stability and
the global convergence of the RNN model are proved.

1. Introduction

Many problems in engineering, such as optimal control, adaptive signal processing, kine-
matic control of redundant robot manipulators, and non-linear model predictive control
can be modelled as dynamic programming problems and many of them are involved with
non-convexity and multiplicity in objective functions. For example, control of redundant
robot manipulators and real-time motion planning can be modelled as constrained NCOPs
for simultaneously maximizing manipulability and minimizing kinetic energy. Obtaining
the real time optimal solutions is the difficulty of dynamic optimization, especially in the
presence of uncertainty. Applying the RNN models for optimization in such applications
are always more competent than conventional optimization techniques. This is because of
their salient features of biological plausibility, intrinsic nature of distributed and parallel
information processing and hardware parallelizability.

The pioneering works on an RNN model to optimization is for Hopfield and Tank [1].
Neurodynamic optimization has received great success in recent years [2, 3, 5, 4]
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2. Non-convex optimization

In this section we introduce the non-convex optimization problem.
Consider the following constrained optimization problem:

min f(x),

s.t. gj(x) ≤ bj, j = 1, 2, . . . ,m, (2.1)
x ∈ X,

where f : Rn → R and gj : Rn → R are m-dimensional vector-valued functions of n
variables, and X is a box set defined as X = {x ∈ R | u ≤ x ≤ v, u, v ∈ R}. In this
paper, the functions f, g1(x), . . . , gm(x) are assumed to be twice differentiable. Also, we
assume that f is positive on X, gj is non-negative on X, and bj is positive for j = 1, . . . ,m.
Note that, the following notations. I = {1, . . . , n} and J = {1, . . . ,m}. Rn

+ stands for the
non-negative quadrant in the n-dimensional real space. intX stands for the interior of a
set X. The Lagrangian function for problem (2.1) and the Hessian of the Lagrangian can
be formulated as follows:

L(x, λ) = f(x) +

m∑
j=1

λj(gj(x)− bj), λ = (λ1, . . . , λm) ≥ 0

∇2
xL(x, λ) = ∇2f(x) +

m∑
j=1

λj∇2gj(x). (2.2)

Lemma 2.1 (Second-order sufficiency conditions [6]). Suppose that x∗ is a feasible and
regular point of the problem (2.1). If there exists λ∗ ∈ Rm, such that (x∗, λ∗) is a KKT
point pair and the Hessian matrix, that is (2.2) is positive definite on the tangent subspace
M(x∗) = {d ∈ Rn | dT∇gj(x

∗) = 0, d ̸= 0, ∀j ∈ J(x∗)}, where J(x∗) is defined by
J(x∗) = {j ∈ J | λj > 0}, then x∗ is a strict minimum of problem (2.1).

If in problem (2.1) all functions f(x) and gj(x) are convex over the box set X, the problem
is called a convex optimization problem; otherwise, it is called a non-convex optimization
problem. In this point of view, let problem (2.1) be a non-convex optimization problem.
Consider the partial p-power transformation of problem (2.1) as follows:

min [f(x)]p,

s.t. [gj(x)]
p ≤ bpj , j = 1, 2, . . . ,m, (2.3)

x ∈ X.

The Lagrangian function of problem (2.3) is defined as,

Lp(x, µ) = [f(x)]p +
m∑
j=1

µj([gj(x)]
p − bpj),

where µ = (µ1, . . . , µm) ≥ 0. Also, the Lagrange multipliers are defined in [7]. Here,
we state some results about the non-convex optimization problem and it’s partial p-power
transformation.
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Lemma 2.2 ([7]). Let x∗ be a local optimal solution of (2.1) in intX. Assume that, x∗

is a regular point and satisfies the second-order sufficiency conditions. If J(x∗) ̸= ∅, then
there exists a q > 0 such that the Hessian of the partial p-power Lagrangian function, that
is ∇2

xLp(x
∗, µ∗), is positive definite when p > q.

Theorem 2.3 ([7]). Let x∗ ∈ intX be a local optimal solution of (2.1). If all conditions
in Lemma 2.2 hold, then there exists a q > 0 such that ∇2

xLp(x
∗, µ∗) is positive definite on

a set N ⊂ X × Rm
+ when p > q. Note that, N is a set on which ∇2

xL(x, λ) or ∇2f(x) is
positive definite.

According to the former discussion, since ∇2
xLp(x

∗, µ∗) is positive definite.

3. Projection RNN model

In this section, we propose our new neurodynamic model.
Let F : Rn → Rn be a Lipschitz continuous vector function with constant L > 0.

Consider the function g(x, β) as follow for 0 < β < 1
L

:
g(x, β) = e(x, β)− β[F (x)− F (x− e(x, β))], (3.1)
e(x, β) = x− PΩ[x− βF (x)]. (3.2)

We propose the new neurodynamic model as follows:
dx

dt
= PΩ[x− λg(x, β)]− x, (3.3)

where 0 < λ ≤ 1.
Theorem 3.1. Assume that, F (·) is a Lipschitz continuous function in Rn. Then, there
is a unique Lipschitz continuous solution x(t) for (3.3). Moreover, when x(t0) ̸∈ Ω, the
solution x(t) approaches Ω, exponentially. Besides, when x(t0) ∈ Ω, x(t) ∈ Ω.
Theorem 3.2. Let F (·) be a pseudo-monotone and Lipschitz continuous function with the
constant L. Then, the neurodynamic model (3.3) for 0 < β ≤ 1

5L
and 0 < λ ≤ 1 is stable

in the sense of Lyapunov and globally convergent.

4. An example

Example 4.1 ([8]). Consider an invex optimization problem as follows:
min f(x) = 1 + x2

1 − exp(−x2
2)

s.t. g1(x) = x2
1 − x2 + 0.5 ≤ 0

g2(x) = 2x2 − x2
1 − 3 ≤ 0.

Figure 1 shows the isometric view of f(x) in 3-D space. As depicted in Figure 1(A),
the objective function f(x) is a smooth invex function. The feasible region S = {x ∈
R2, x2

1 − x2 + 0.5 ≤ 0, 2x2 − x2
1 − 3 ≤ 0} is not a convex set. The invex optimization

problem has a unique KKT point (0, 0.5), which is the global minimum solution. Therefore,
we use our model to solve this problem by letting λ = 0.5 and β = 0.05. Figure 1(B) shows
the convergence behaviour of the neurodynamic model (3.3).
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(a) Isometric view of the objective func-
tion in Example 4.1.
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(b) Trajectories behaviour of
neural network (3.3) in Exam-
ple 4.1.

Figure 1. Example 4.1.
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