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Abstract. In this paper, we investigate the stabilization problem of a cascade of a frac-
tional ordinary differential equation (FODE) and a fractional diffusion (FD) equation
where the interconnections are of Neumann type. We exploit the PDE backstepping
method as a powerful tool for designing a controller to show the Mittag-Leffler stability
of the FD-FODE cascade. Finally, a numerical example is presented to verify the results.

1. Introduction

In control engineering, control of partial differential equations (PDEs) is physically mo-
tivated and is a challenging subject for research [2]. The stabilizability of the systems
described by PDEs is hard to check [6], so an efficient tool is required to analyze the
stability of the PDE systems.

One of the most useful approaches for boundary controller design is the PDE backstep-
ping method [2]. On the other hand, real systems in our world are complex and can be
well characterized by fractional order’s notions [5]. In [1] the backstepping-based bound-
ary feedback control problem of fractional reaction diffusion system with mixed or Robin
boundary control is addressed.
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In the last decades, the stabilization problem for coupled systems becomes one of the
challenging issues. The cascade structure for the heat PDE with an ODE, when the inter-
connection is of Dirichlet type, is discussed in [3]. In [4], the stabilization problem for a
new cascade of PDE-ODE is studied.

To the best of our knowledge, the stabilization problem and also designing the controller
for a cascade of an FD equation and an FODE equation has not been addressed yet. In
this paper, we consider a cascade of an FODE equation and an FD equation, and we use an
invertible integral transformation to transfer the original system to a Mittag-Leffler stable
target system. Finally, we present a numerical example to verify the theoretical results.

2. Preliminaries

Definition 2.1. The Caputo fractional-order derivative is defined by

C
t0
Dα

t x(t) =
1

Γ(n− α)

∫ t

t0

xn(τ)

(t− τ)α+1−n
dτ, (n− 1 < α < n) (2.1)

where α is the fractional order, and the gamma function Γ is defined as γ(τ) =
∫∞
0

tτ−1e−tdt.

Definition 2.2. (Mittag-Leffler stability) The solution of
C
t0
Dα

t u(t) = f(t, u),

is said to be Mittag-Leffler stable if
∥u(t)∥ ≤ (m[u(t0)]Eα(−λ(t− t0)

α))b ,

where t0 is the initial value of time, α ∈ (0, 1), λ ≥ 0, b > 0, m(0) = 0, m(u) is nonnegative
and meets locally Lipschitz condition on u ∈ B ⊂ Rn.

3. Problem statement and analysis

Consider the cascade of a fractional diffusion (FD) equation and a fractional-order ordi-
nary differential equation (FODE) with Caputo derivative as follows:

C
0 D

α
t X(t) = AX(t) +Bux(0, t), (3.1)

C
0 D

α
t u(x, t) = uxx(x, t), (3.2)
u(0, t) = 0, (3.3)
u(D, t) = U(t), (3.4)

where 0 < α < 1, X(t) ∈ Rn is the state of the FODE system, governed by the FODE
equation, and u(x, t) is the state of the FD system, governed by the FD equation, and U(t)
is a scalar input. Note that t ≥ 0, x ∈ [0, D] in which D > 0 is the length of the PDE
domain. The aim is to Mittag-Leffler stabilize the system (3.1)-(3.4).

We use the PDE backstepping approach which applies the following invertible integral
transformation:

w(x, t) = u(x, t)−
∫ x

0

q(x, y)u(y, t)dy − γ(x)X(t), (3.5)
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to convert the cascade of an FD and an FODE (3.1)-(3.4) into the target system given by:

C
0 D

α
t X(t) = (A+BK)X(t) +Bwx(0, t), (3.6)

C
0 D

α
t w(x, t) = wxx(x, t), (3.7)
w(0, t) = 0, (3.8)
w(D, t) = 0. (3.9)

The control gain K is chosen such that the Mittag-Leffler stability of the target system is
guaranteed. After some calculations, for converting (3.1)-(3.4) to (3.6)-(3.9), it is concluded
that:

γ′′(x) = Aγ(x), γ(0) = 0, γ′(0) = K, (3.10)

and

qxx(x, y) = qyy(x, y), q(x, x) = 0, q(x, 0) = γ(x)B. (3.11)

Moreover, we consider the following assumption in the throughout of the paper:
(H1) We assume that the system (3.1) is controllable.

Theorem 3.1. Consider a closed-loop system consisting of the plant (3.1)-(3.4) and the
control law:

U(t) = K
[
0n In

]{
e

0n A
In 0n

D [
In
0n

]
X(t) +

∫ D

0

e

0n A
In 0n

(D−y) [
In
0n

]
Bu(y, t)dy

}
. (3.12)

Assume that there exist positive constants d and β and also a symmetric positive definite
matrix P , such that the control gain K satisfies in the following inequality:

Ω =


P (A+BK) + (A+BK)TP PB 0 0

BTP −d 0 0
0 0 −β 0
0 0 0 −β

 ≺ 0. (3.13)

Also, suppose that ux(., t) is square integrable and wx(., t) is continuously differentiable for
all t ∈ [0,∞]. Then the closed-loop system under the control law (3.12) is Mittag-Leffler
stable in the sense of the following norm:
(|X(t)|2 +

∫ D

0
u2
x(x, t)dx)

1
2

4. Numerical simulation

In this section, we present a numerical example to verify our theoretical results.
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Example 4.1. Consider the following system:
C
0 D

α
t X(t) = X(t) + ux(0, t) (4.1)

C
0 D

α
t u(x, t) = uxx(x, t) (4.2)
u(0, t) = 0 (4.3)
u(D, t) = U(t) (4.4)

in which α = 0.75, u(x, 0) = 0 and X(0) = 1 as initial conditions. U(t) is determined by
relation (3.12) as follows:

U(t) = K

[
sinh(D)X(t) +

∫ D

0

sinh(D − y)u(y)dy

]
(4.5)

we have used CVX 1.2.1 and obtain the feedback gain K = −16.0150 to satisfy in (3.13).

5. Conclusions

In this article we provide a Dirichlet backstepping-based boundary feedback control to
guarantee the Mittag-Leffler stability of the FD-FODE coupled system. Also, the numerical
example confirms the obtained results.
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