

ON THE GENERALIZED F-SUZUKI-CONTRACTIONS

HAMID MEHRAVARAN^{1*}, REZA ALLAHYARI¹

¹ Department of Mathematics, Mashhad Branch, Islamic Azad University, , Mashhad, Iran. hamid_mehravaran@mshdiau.ac.ir; rezaallahyari@mshdiau.ac.ir

ABSTRACT. In this paper, we introduce the new notion of generalized F-Suzuki-contraction in the setup of dislocated S_b -metric spaces. We establish some fixed point theorems involving this contraction in complete dislocated S_b -metric spaces. We also furnish an example to verify the effectiveness and applicability of our results.

1. INTRODUCTION

In 2012, Sedghi et al. [5] introduced the concept of S-metric space by modifying Dmetric and G-metric spaces and proved some fixed point theorems for a self-mapping on a complete S-metric space. After that $\ddot{O}zg\ddot{u}r$ and TaŞ studied some generalizations of the Banach contraction principle on S-metric spaces. Sedghi et al. [4] introduced the concept of S_b -metric space as a generalization of S-metric space and proved some coupled common fixed point theorems in S_b -metric space.

On the other hand, Wardowski [6] introduced a new contraction, the so-called F-contraction, and obtained a fixed point result as a generalization of the Banach contraction principle. Thereafter, Dung and Hang studied the notion of a generalized F-contraction and established certain fixed point theorems for such mappings. Recently, Piri and Kumam [2] extended the fixed point results of [6] by introducing a generalized F-Suzuki-contraction in b-metric spaces.

Motivated by the aforementioned works, in this paper, we introduce the new notion of generalized F-Suzuki-contraction in the setup of dislocated S_b -metric spaces. We establish some fixed point theorems involving this contraction in complete dislocated S_b -metric spaces. We also furnish an example to verify the effectiveness and applicability of our results.

²⁰¹⁰ Mathematics Subject Classification. Primary 47H09, Secondary 47H10.

Key words and phrases. Dislocated metric space, Fixed point, Generalized F-Suzuki-contraction, S_b -Metric space.

^{*} Speaker.

H. MEHRAVARAN ET AL.

We begin with some basic well-known definitions and results which will be used further on. Throughout this paper \mathbb{R} , \mathbb{R}_+ , \mathbb{N} denote the set of all real numbers, the set of all nonnegative real numbers and the set of all positive integers, respectively.

Definition 1.1. [5] Let X be a nonempty set. An S-metric on X is a function $S : X^3 \to \mathbb{R}_+$ that satisfies the following conditions:

- $(S1) \ \ 0 < S(x,y,z) \ \text{for each} \ x,y,z \in X \ \text{with} \ x \neq y \neq z \neq x,$
- (S2) S(x, y, z) = 0 if and only if x = y = z,
- $(S3) S(x,y,z) \leq S(x,x,a) + S(y,y,a) + S(z,z,a) \text{ for each } x,y,z,a \in X.$

Then the pair (X, S) is called an S-metric space.

Definition 1.2. [4] Let X be a nonempty set and $b \ge 1$ be a given real number. Suppose that a mapping $S_b: X^3 \to \mathbb{R}_+$ satisfies:

- (S_b1) 0 < $S_b(x, y, z)$ for all $x, y, z \in X$ with $x \neq y \neq z \neq x$,
- $(S_b 2)$ $S_b(x, y, z) = 0$ if and only if x = y = z,
- $(S_b3) S_b(x, y, z) \le b(S_b(x, x, a) + S_b(y, y, a) + S_b(z, z, a))$ for all $x, y, z, a \in X$.

Then S_b is called an S_b -metric on X and the pair (X, S_b) is called an S_b -metric space.

Definition 1.3. [4] If (X, S_b) is an S_b -metric space, a sequence $\{x_n\}$ in X is said to be:

- (1) Cauchy sequence if, for each $\varepsilon > 0$, there exists $n_0 \in \mathbb{N}$ such that $S_b(x_n, x_n, x_m) < \varepsilon$ for all $m, n \ge n_0$.
- (2) convergent to a point $x \in X$ if, for each $\varepsilon > 0$, there exists a positive integer n_0 such that $S_b(x_n, x_n, x) < \varepsilon$ or $S_b(x, x, x_n) < \varepsilon$ for all $n \ge n_0$, and we denote by $\lim_{n \to \infty} x_n = x$.

Definition 1.4. [4] An S_b -metric space (X, S_b) is called complete if every Cauchy sequence is convergent in X.

Example 1.5. [3] Let $X = \mathbb{R}$. Define $S_b : X^3 \to \mathbb{R}_+$ by $S_b(x, y, z) = |x - z| + |y - z|$ for all $x, y, z \in X$. Then (X, S_b) is a complete S_b -metric space with b = 2.

Definition 1.6. [6] Let \mathcal{F} be the family of all functions $F: (0, +\infty) \to \mathbb{R}$ such that:

- (F1) F is strictly increasing, that is for all $\alpha, \beta \in (0, +\infty)$ such that $\alpha < \beta, F(\alpha) < F(\beta)$,
- (F2) for each sequence $\{\alpha_n\}$ of positive numbers, $\lim_{n \to +\infty} \alpha_n = 0$ if and only if $\lim_{n \to +\infty} F(\alpha_n) = -\infty$,

(F3) there exists $k \in (0, 1)$ such that $\lim_{\alpha \to 0^+} \alpha^k F(\alpha) = 0$.

In 2014, Piri and Kumam described a large class of functions by replacing the condition (F3) in the above definition with the following one:

(F3') F is continuous on $(0, +\infty)$.

They denote by \mathfrak{F} the family of all functions $F : (0, +\infty) \to \mathbb{R}$ which satisfy conditions (F1), (F2), and (F3').

We use \mathfrak{F}_G to denote the set of all functions $F: (0, +\infty) \to \mathbb{R}$ which satisfy conditions (F1)and (F3') and Ψ to denote the set of all functions $\psi: \mathbb{R}_+ \to \mathbb{R}_+$ such that ψ is continuous and $\psi(t) = 0$ if and only if t = 0 (see [2]).

 $\mathbf{2}$

Definition 1.7. [2] Let (X, d) be a *b*-metric space. A self-mapping $T : X \to X$ is said to be a generalized *F*-Suzuki-contraction if there exists $F \in \mathfrak{F}_G$ such that, for all $x, y \in X$ with $x \neq y$,

$$\frac{1}{2s}d(x,Tx) < d(x,y) \Rightarrow F\left(s^{5}d(Tx,Ty)\right) \le F\left(M_{T}(x,y)\right) - \psi\left(M_{T}(x,y)\right),$$

in which $\psi \in \Psi$ and

$$M_T(x,y) = \max\left\{ d(x,y), d(T^2x,y), \frac{d(Tx,y) + d(x,Ty)}{2s}, \frac{d(T^2x,x) + d(T^2x,Ty)}{2s}, \\ d(T^2x,Ty) + d(T^2x,Tx), d(T^2x,Ty) + d(Tx,x), d(Tx,y) + d(y,Ty) \right\}.$$

Theorem 1.8. [2] Let (X, d) be a complete b-metric space and $T : X \to X$ be a generalized *F*-Suzuki-contraction. Then *T* has a unique fixed point $x^* \in X$ and for every $x \in X$ the sequence $\{T^nx\}$ converges to x^* .

2. Main results

In this section, we first introduce the concept of dislocated S_b -metric space and then we demonstrate a fixed point result for generalized F-Suzuki-contractions in such spaces.

Definition 2.1. [1] Let X be a nonempty set and $b \ge 1$ be a given real number. A mapping $S_b : X^3 \to \mathbb{R}_+$ is a dislocated S_b -metric if, for all $x, y, z, a \in X$, the following conditions are satisfied:

 (dS_b1) $S_b(x, y, z) = 0$ implies x = y = z,

 $(dS_b2) \ S_b(x, y, z) \le b \big(S_b(x, x, a) + S_b(y, y, a) + S_b(z, z, a) \big).$

A dislocated S_b -metric space is a pair (X, S_b) such that X is a nonempty set and S_b is a dislocated S_b -metric on X. In the case that b = 1, S_b is denoted by S and it is called dislocated S-metric, and the pair (X, S) is called dislocated S-metric space.

Definition 2.2. [1] Let (X, S_b) be a dislocated S_b -metric space, $\{x_n\}$ be any sequence in X and $x \in X$. Then:

- (i) The sequence $\{x_n\}$ is said to be a Cauchy sequence in (X, S_b) if, for each $\varepsilon > 0$, there exists $n_0 \in \mathbb{N}$ such that $S_b(x_n, x_n, x_m) < \varepsilon$ for each $m, n \ge n_0$.
- (ii) The sequence $\{x_n\}$ is said to be convergent to x if, for each $\varepsilon > 0$, there exists a positive integer n_0 such that $S_b(x, x, x_n) < \varepsilon$ for all $n \ge n_0$ and we denote it by $\lim_{n \to \infty} x_n = x$.
- (*iii*) (X, S_b) is said to be complete if every Cauchy sequence is convergent.

The following example shows that a dislocated S_b -metric need not be a dislocated S-metric.

Example 2.3. [1] Let $X = \mathbb{R}_+$, then the mapping $S_b : X^3 \to \mathbb{R}_+$ defined by $S_b(x, y, z) = x + y + 4z$ is a complete dislocated S_b -metric on X with b = 2. However, it is not a dislocated S-metric space. Indeed, we have

$$4 = S_b(0,0,1) \leq 2S_b(0,0,0) + S_b(1,1,0) = 2.$$

Definition 2.4. [1] Let (X, S_b) be a dislocated S_b -metric space. A mapping $T : X \to X$ is said to be a generalized *F*-Suzuki-contraction if there exists $F \in \mathfrak{F}$ such that for all $x, y \in X$

$$\frac{1}{2b}S_b(x,x,Tx) < S_b(x,x,y) \Rightarrow F\left(2b^3S_b(Tx,Tx,Ty)\right) \le F\left(M_T(x,y)\right) - \psi\left(M_T(x,y)\right), \tag{2.1}$$

where $\psi \in \Psi$ and

$$M_T(x,y) = \max\left\{S_b(x,x,y), \frac{S_b(y,y,Ty)}{10}, \frac{S_b(x,x,Tx)}{10}, S_b(Tx,Tx,Ty), \frac{S_b(y,y,Tx)}{18b}, \frac{S_b(Tx,Tx,T^2x)}{2}\right\}.$$

Our main result is the following.

Theorem 2.5. [1] Let (X, S_b) be a complete dislocated S_b -metric space and $T : X \to X$ be a generalized F-Suzuki-contraction satisfying the following condition:

$$\max\left\{\frac{S_b(y,y,Ty)}{10}, \frac{S_b(x,x,Tx)}{10}, \frac{S_b(y,y,Ty)}{9} + \frac{S_b(Tx,Tx,Ty)}{18}, \frac{S_b(Tx,Tx,T^2x)}{2}\right\} \le S_b(Tx,Tx,Ty)$$
for all x, y in X. Then T has a unique fixed point in X.

Example 2.6. [1] Let $X = \{-1, 0, 1\}$. Define the mapping $S_b : X^3 \to \mathbb{R}_+$ by

$$S_b(x,y,z) = \begin{cases} \frac{3}{2}, & 0 = x = y \neq z = 1 \text{ or } -1 = x = y \neq z = 1\\ \frac{10}{6}, & 1 = x = y \neq z\\ 0, & x = y = z = -1 \text{ or } 1\\ \frac{1}{5}, & otherwise \end{cases}$$

for all $x, y, z \in X$. Therefore (X, S_b) is a complete dislocated S_b -metric space with $b = \frac{3}{2}$. Put $F(\alpha) = \ln \alpha \ (\alpha > 0)$ and $\psi(t) = t \ (t \ge 0)$. Define $T : X \to X$ by

$$T(x) = \begin{cases} 0, & x = 1\\ -1, & x = -1, 0. \end{cases}$$

Hence, T is a generalized F-Suzuki-contraction which satisfies the assumption of Theorem 2.5 and so it has a unique fixed point -1.

References

- H. Mehravaran, M. Khanehgir and R. Allahyari, Fixed Point Theorems for Generalized F-Contractions and Generalized F-Suzuki-Contractions in Complete Dislocated S_b-Metric Spaces, Int. J. Anal. Appl., 17 (2019), 734-751.
- H. Piri, P. Kumam, Fixed point theorems for generalized F-Suzuki-contraction mappings in complete b-metric spaces, Fixed Point Theory Appl., 90 (2016), 13 pages.
- [3] Y. Rohená, T. Došenović, S. Radenović, A note on the paper "A Fixed point Theorems in S_b-Metric Spaces", Filomal, 31 11 (2017), 3335–3346.
- [4] Sh. Sedghi, A. Gholidahne, T. Došenovic, J. Esfahani, S. Radenovic, Common fixed point of four maps in S_b-metric spaces, J. Linear Topol. Alg., 5 2 (2016), 93–104.
- [5] Sh. Sedghi, N. Shobe, A. Aliouche, A generalization of fixed point theorem in S-metric spaces, Mat. Vesn., 64 (2012), 258–266.
- [6] D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces Fixed Point Theory Appl., 94 (2012), 6 pages.