
SOLUTION OF OPTIMAL CONTROL VAN DER POL PROBLEM
USING MULTIPLE SHOOTING ALGORITHM

PARISA SHEKARI∗, KAZEM NOURI, AND HASSAN RANJBAR

Department of Mathematics, Faculty of Mathematics,
Statistics and Computer Sciences,

Semnan University, P. O. Box 35195-363, Semnan, Iran
Parisa_ sh_ 67@yahoo.com

knouri@semnan.ac.ir
hranjbar@semnan.ac.ir

Abstract. In this work, we propose a numerical algorithm for solving optimal control
van der pol problem. This approach is based multiple shooting method. A numerical
simulation demonstrates the control performance and the stability of the proposed method.

1. Introduction

There are at least two basically different ways of solving optimal control problems. In
the indirect approach, the controls are expressed by the maximum principle in terms of
state and adjoint variables, which can be computed by solving a possibly very intricate
multipoint boundary value problem with jumps and switching conditions. In recent years
reliable, stable and efficient numerical algorithms have been developed for the solution of
this general class of problems, based on the multiple shooting technique , which actually
made accessible the wide applicability of the indirect approach, which includes control- or
state-constrained and Chebyshev- roblems as well as feed-back control.
Multiple shooting is one of many methods for finding an optimal trajectory. A trajectory is
a full description of the path that a dynamical system can take between two points in state
space. An optimal trajectory is a trajectory that minimizes some cost function[1]. The
present paper introduces a numerical algorithm for the direct approach, which solves the
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optimal control problem directly in terms of control and state variables. In the new method,
a multiple shooting parameterization of the state differential equations is coupled with a
simultaneous control parameterization. This leads to a large constrained finite optimization
problem, for which a specially suited recursive quadratic programming algorithm with
new high rank update formulae is developed, that leads to a substantical improvement of
performance compared to previous direct approaches. The algorithm is globally convergent,
its local convergence is super-linear with an asymptotic convergence rate that is essentially
independent of the mesh size used in the parameterization. In view of practical applications,
it is one of the most important properties of the new algorithm that it is completely
derivative-free (due to internal numerical differentiation schemes). This means, that any
analytical preparations (such as derivation of adjoint equations) are strictly avoided.

2. Optimal Control Problem formulation

We consider the following general class of optimal control problems (OCPs)

min J(x(.), u(.)) =

∫ tf

t0

f(t, x(t), u(t))dt

s.t. ẋ(t) = f(t, x(t), u(t)) ∀t ∈ τ

r(ti, x(ti) = 0 0 ≤ i ≤ m

g(ti, u(ti) ≥ 0, 0 ≤ i ≤ m,

(2.1)

which we strive to minimize the objective function J(.) depending on the trajectory x(t) ∈
Rn of a dynamic process described in terms of a system f : τ ×Rn ×Rn → Rn of (ODEs),
running on a time horizon τ := [t0, tf ] ⊂ R and governed by a control trajectory u(t) ∈ Rn

subject to optimization. The process trajectory x(.) and the control trajectory u(.) shall
satisfy certain inequality path constraints r : τ × Rn → Rn and g := τ × Rn → Rn on a
prescribed grid on τ consisting of m+ 1 grid points

t0 < t1 < · · · < tm = tf m ∈ N (2.2)

In order to make this infinite-dimensional OCPs computationally accessible, the direct
multiple shooting method is applied to discretize the control trajectory u(.) subject to
optimization.

2.1. Parmeterization of OCPs by Multiple Shooting. We introduce a discretization
of the control trajectory u(.) by defining a shooting grid (2.2) which shall be a super-set of
the constraint grid used in (2.1). For clarity, we assume in the following that the two grids
coincide, though this is not a theoretical or algorithmic requirement. On each interval of
the shooting grid (2.2), we introduce a vector qi ∈ Rn of control parameters together with
an associated control base function bi = τ × Rn → Rn with local support,

u(t) =

ni∑
j=1

bij(t, qij), τ ∈ [ti, ti+1] ⊆ τ, 0 ≤ i ≤ m− 1 (2.3)
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The number and location of the shooting grid points and the choice of base functions obvi-
ously affect the approximation quality of the optimal solution of the discretized problem.

In addition, we introduce state vectors si ∈ Rn in all shooting nodes serving as initial
values for m initial value problems

ẋi = f(t, xi(t), qi), xi(ti) = si, t ∈ [ti, ti+1] ⊆ τ, 0 ≤ i ≤ m− 1 (2.4)

This parametrization of the process trajectory x(.) will in general be discontinuous on τ .
Continuity of the solution is ensured by introduction of additional matching conditions

xi(ti+1; ti, si, qi)− si+1 = 0, 0 ≤ i ≤ m− 1 (2.5)

where xi(ti+1; ti, si, qi) denote the state trajectory’s value xi(.) in ti+1 depending on the
start time ti , initial value si , and control parameters qi on that interval.

The path constraints of problem (2.1) are enforced on the nodes of the shooting grid
(2.2) only. While in general it can be observed that this formulation already leads to a
solution that satisfies the path constraints on the whole of τ . To ensure this in a rigorous
fashion. For clarity, we define the combined constraint functions r : τ × Rn → Rn

0 ≤ r∗i (ti, si, qi), 0 ≤ i ≤ m− 1, 0 ≤ rm(tm, sm) (2.6)

with nr∗
i = nr

i + ng
i . These comprise all discretized path constraints as well as equality and

inequality point constraints.
The objective function J(x(.), u(.)) shall be separable with respect to the shooting grid

structure. In general, J(.) will be a Mayer-type function evaluated at the end of the
horizon τ or Lagrange type integral objective evaluated on the whole of τ . For both types,
a separable formulation is easily found,

J(x(.), u(.)) =
m−1∑
i=0

∫ ti+1

ti

li(xi(t), qi)dt (2.7)

Summarizing, the discretized multiple shooting optimal control problem can be cast as a
nonlinear problem

min
ω

m∑
i=0

li(ωi)

xi(ti+1; ti, ωi)− si+1 = 0

ri(ωi) ≥ 0

(2.8)

with the vector of unknowns ω being
ω = (s1, q1, · · · , sm−1, qm−1, sm)

ωi = (si, qi), 0 ≤ i ≤ m− 1, ωm := sm

where the evaluation of the matching condition constraint (2.8) requires the solution of an
initial value problem (2.4) [2].
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3. Numerical Results

The Van der Pol (VDP) Problem is relatively simple and was chosen for comparison
purposes [4]

Min
1

2

∫ tf

0

(x2
1 + x2

2 + u2)dt

ẋ1 = x2, x1(0) = 1, x1(t) = 1, t ∈ [0, tf ]

ẋ2 = −x1 + (1− x2
1)x2 + u, x2(0) = 0, x2(t) = 0, t ∈ [0, tf ]

u(t) ∈ [0, 2], t ∈ [0, tf ]

x1(5)− x2(5) + 1 = 0

(3.1)

Table 1 shows the results of ICLOCS package for a piecewise linear control parameteriza-
tion. The initial guesses were x1(tj) = 1, x2(tj) = 0. Also, in Table 1 quotes the results

Table 1. Numerical results for (3.1).

Methods ICLOCS [3]
Number of function evaluations 56 36

Number of qradient evaluations (iterations) 9 31
CPU-sec total 1.53 15.02

J(x, u) 1.6875 1.6875

of Pouliot et al. [3] obtained by a single shooting nonlinear programming algorithm with
the same control parameterization and same initial data. The graphs of x1, x2 and u are
shown in figure 1. This results show the accuracy of our method in comparison with [3].

Figure 1. VDP: state variable (left) and control u (right)
.
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