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Abstract
In this paper, based on Condat’s discrete total variation model, a modified discrete TV model is introduced for image
processing problems. A dual formulation for the proposed TV is explained and an efficient primal-dual algorithm
is employed to solve the problem. Some important image test problems are used in the numerical experiments. We
compare our new model with state of the art models; isotropic, upwind, TGV and so on in image denoising and
upscaling problems.
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1. Introduction

In this paper a new variational model is proosed for solving image processing problems.
Assume x ∈ (R)N1×N2 , generally a mathematical image problem can be formulated by the following optimization
problem:

minF (x) + R(x). (1)

where F represents the data fidelity and R is the regularization term. The most common fidelity term is of the form

F (x) =
1
2
‖G(x) − g‖2,

for appropriate function G and the given norm ‖.‖. Most frequently chosen regularization term is given by

R(x) = λ|x|2,

where | . | is Euclidean norm. Now, suppose s : Ω ⊂ RN → R, s ∈ L1
loc(Ω) is a locally Lipschitz, integrable N-

dimensional function. Consider the following optimization problem to solve continuous version of mathematical
image problems:

min
s

1
2

∫
Ω

|G(s(t)) − g(t)|2dt + λJ(s), (2)

where

J(s) = sup
{
−

∫
Ω

s.divφdt : φ ∈ C1
c (Ω,RN), |φ(t)| ≤ 1,∀t ∈ Ω

}
. (3)

J(s) is duality definition of total variation (TV) of the function s. A function s is said to have bounded variation
whenever J(s) < ∞. The space BV(Ω) of functions with bounded variation is the set of functions s ∈ L1(Ω) such
that J(s) < ∞, endowed with the norm ‖s‖BV(Ω) = ‖s‖L1(Ω) + J(s). Obviously, for smooth function s ∈ C1(Ω) (or
s ∈ W1,1(Ω)),

J(s) =

∫
Ω

|∇s|dt (4)

For two dimensional smooth function s, minimization of J(s) is equivalent to minimization of the majority of deriva-
tive over the dimension of the function. Intuitively, minimization problem (2) simultaneously tries to remove the noise
from the continuous image s (which is equivalent to minimization of the total first derivative over the domain) and
forces the function G(s) to be near enough to g. See [12, 13, 15] and references therein.
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2. The New discretization for total variation functional

In this section, a new discrete TV is introduced for solving image processing problems. Suppose Ω ⊆ R2, s ∈
L1

loc(Ω), Dd s(t1, t2) = ∂s
∂t1

+ ∂s
∂t2

and Des(t1, t2) = ∂s
∂t2
− ∂s

∂t1
are directional derivatives of s at the directions of d = (1, 1)

and e = (−1, 1) on (t1, t2) respectively. We can rewrite (4) as

J(s) =

∫
Ω

|∇s|dt =

∫
Ω

√
(
∂s
∂t1

)2 + (
∂s
∂t2

)2dt1dt2 =
1
√

3

∫
Ω

√
(
∂s
∂t1

)2 + (
∂s
∂t2

)2 + (Dd s(t1, t2))2 + (Des(t1, t2)2dt1dt2.

(5)
For discrete image x ∈ RN1×N2 , (n1, n2) ∈ {1, 2, · · · ,N1} × {1, 2, · · · ,N2} = X, inspiring 5 and withdrawing coefficient

1
√

3
, define the following predefined regularization semi-norm:

TVprn(x) =

N1∑
n1=1

N2∑
n2=1

√
((Dx)1(n1, n2))2 + ((Dx)2(n1, n2))2 + ((Dx)3(n1, n2))2 + ((Dx)4(n1, n2))2, (6)

where (Dx)1 and (Dx)2 are are forward difference operators and

Dd x(n1, n2) ≈ (Dx)3(n1, n2) = x(n1 + 1, n2 + 1) − x(n1, n2),
Dex(n1, n2) ≈ (Dx)4(n1, n2) = x(n1 − 1, n2 + 1) − x(n1, n2), (7)

The equivalent definition of (6) is:

TVprn(x) = maxu=(u1,u2,u3,u4)∈(R4)N1×N2 {< Dx, u >: |u(n1, n2)| ≤ 1, ∀(n1, n2) ∈ X} ,
= maxu∈(R4)N1×N2 {− < x, divu >: |u(n1, n2)| ≤ 1, ∀(n1, n2) ∈ X} . (8)

where Dx = ((Dx)1, (Dx)2, (Dx)3, (Dx)4)T and

|u(n1, n2)| =
√

u2
1(n1, n2) + u2

2(n1, n2) + u2
3(n1, n2) + u2

4(n1, n2) (9)

and
divu(n1, n2) = u1(n1, n2) − u1(n1 − 1, n2) + u2(n1, n2) − u2(n1, n2 − 1)

+u3(n1, n2) − u3(n1 − 1, n2 − 1) + u4(n1, n2) − u4(n1 + 1, n2 − 1). (10)

The second part of (8) corresponds to the original definition of total variation (3). Now we need to impose suitable
boundary conditions on the image x and gradient field u = (u1, u2, u3, u4), for which equalities in (8) is well defined.

2.1. Directional operators

Definition 2.1. : From now on, we use the following four indexes:
1. • is used for any element which is located in the center of a pixel. The location of an element v which is located in
the center of pixel (n1, n2) is shown by (n1, n2) and we write v ∈ A•.
2. l is used for any element v which is located in the middle point of the edge which is the intersection of two pixels
(n1, n2) and (n1 + 1, n2) and thus the location of such element is on (n1 + 1

2 , n2) and we write v ∈ Al.
3. ↔ is used for any element v which is located in the middle point of the edge which is the intersection of two pixels
(n1, n2) and (n1, n2 + 1) and thus the location of such element is on (n1, n2 + 1

2 ) and we write v ∈ A↔.
4. + is used for any element which is located in the vertex of a pixel. the element which is located in down right vertex
of pixel (n1, n2) is located in (n1 + 1

2 , n2 + 1
2 ) and we write v ∈ A+.
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Now we define three operators Ll, L↔, and L• over u ∈ (R4)N1×N2 :

(Llu)1(n1, n2) = u1(n1, n2),
(Llu)2(n1, n2) = 1

4 (u2(n1, n2) + u2(n1, n2 − 1) + u2(n1 + 1, n2) + u2(n1 + 1, n2 − 1)),
(Llu)3(n1, n2) = 1

2 (u3(n1, n2) + u3(n1, n2 − 1)),
(Llu)4(n1, n2) = 1

6 (u4(n1, n2) + u4(n1, n2 − 1) + u4(n1 + 1, n2) + u4(n1 + 1, n2 − 1) + u4(n1 + 2, n2) + u4(n1 + 2, n2 − 1)).

(L↔u)1(n1, n2) = 1
4 (u1(n1, n2) + u1(n1 − 1, n2) + u1(n1, n2 + 1) + u1(n1 − 1, n2 + 1)),

(L↔u)2(n1, n2) = u2(n1, n2),
(L↔u)3(n1, n2) = 1

2 (u3(n1, n2) + u3(n1 − 1, n2)),
(L↔u)4(n1, n2) = 1

2 (u4(n1, n2) + u4(n1 + 1, n2)).

(L•u)1(n1, n2) = 1
2 (u1(n1, n2) + u1(n1 − 1, n2)),

(L•u)2(n1, n2) = 1
2 (u2(n1, n2) + u2(n1, n2 − 1)),

(L•u)3(n1, n2) = 1
4 (u3(n1, n2) + u3(n1, n2 − 1) + u3(n1 − 1, n2) + u3(n1 − 1, n2 − 1)),

(L•u)4(n1, n2) = 1
4 (u4(n1, n2) + u4(n1 + 1, n2) + u4(n1, n2 − 1) + u4(n1 + 1, n2 − 1)).

(11)

Remark 2.2. In the above definition of operators, operator Ll operates on u = (u1, u2, u3, u4)T , where ui ∈ RN1×N2 , i =

1, 2, 3, 4. Operator Ll use interpolation of some corresponding values on the neighbor pixels such that (Llu)1(n1, n2),
(Llu)2(n1, n2), (Llu)3(n1, n2) and (Llu)4(n1, n2) belong to Al. Implementation of operators L↔, L+ and L• are similar.

Now we propose the following new discrete total variation:

TVnew(x) = max
u∈(R4)N1×N2

{
< Dx, u >: |Llu(n1, n2)| ≤ 1, |L↔u(n1, n2)| ≤ 1, |L•u(n1, n2)| ≤ 1, ∀(n1, n2) ∈ X

}
, (12)

Note that for ? =l,↔, •

|L?u(n1, n2)| =
√

[(L?u)1(n1, n2)]2 + (L?u)2(n1, n2)]2 + (L?u)3(n1, n2)]2 + (L?u)4(n1, n2)]2

3. Fenchel-Rockafellar dual of the proposed regularization term

One of the best methods to solve mathematical image problems is primal-dual method. See some iterative methods
to solve this kind of problems in [25, 28, 29]. In this section, some adjoint operators corresponding to the operators
which are defined in the definition of the new regularization term (12) are given and consequently Fenchel-Rockafellar
dual of (12) is found. Suppose u ∈ (R3)N1×N2 , then it is easy to see that −divu = D∗u = u∗, where

u∗(n1, n2) = [u1(n1 − 1, n2) − u1(n1, n2)] + [u2(n1 − 1, n2 − 1) − u2(n1, n2)]+
[u3(n1 − 1, n2 − 1) − u3(n1, n2)] + [u3(n1 − 1, n2 − 1) − u3(n1, n2)]. (13)

Define
K =

{
(u, s) ∈ (R4)N1×N2 × (R)N1×N2 : s = −divu, |L?u(n1, n2)| ≤ 1, ? =l,↔, •,+

}
, (14)

then obviously
TVnew(x) = max

(u,s)∈(R4)N1×N2×(R)N1×N2
{< x, s > −IK{(u, s)}} , (15)

where

Ik{t} =

{
0, t ∈ K
∞, t < K .
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Now, we define operator L:

L =


Ll 0
L↔ 0
L• 0
D∗ −1

 , L
(

u ∈ (R4)N1×N2

s ∈ RN1×N2

)
=


v̄l
v̄↔
v̄•
ᾱ

 ∈


(R4)N1×N2

(R4)N1×N2

(R4)N1×N2

RN1×N2

 (16)

In the sequel, we need dual definition of TVnew. Therefore, adjoint operators of Ll, L↔, L• and L+ should be calcu-
lated. From the definition of adjoint operator of a linear operator, the following adjoint operators can be found:

Assume vl =


v1
l

v2
l

v3
l

v4
l

 ∈ (R4)N1×N2 , v↔ =


v1
↔

v2
↔

v3
↔

v4
↔

 ∈ (R4)N1×N2 and v• =


v1
•

v2
•

v3
•

v4
•

 ∈ (R4)N1×N2 are dual variables and

v =


vl
v↔
v•
α

, then

L∗(v) =


u∗1
u∗2
u∗3
u∗4
s∗

 ∈
(

(R4)N1×N2

RN1×N2

)
, (17)

where

u∗1(n1, n2) = v1
l
(n1, n2) + 1

4

{
v1
↔(n1, n2) + v1

↔(n1 + 1, n2) + v1
↔(n1, n2 − 1) + v1

↔(n1 + 1, n2 − 1)
}
+

1
2

{
v1
•(n1, n2) + v1

•(n1 + 1, n2)
}

+ {α(n1 + 1, n2) − α(n1, n2)} ,

u∗2(n1, n2) = 1
4

{
v2
l
(n1, n2) + v2

l
(n1, n2 + 1) + v2

l
(n1 − 1, n2) + v2

l
(n1 − 1, n2 + 1)

}
+ v2
↔(n1, n2)+

1
2

{
v2
•(n1, n2) + v2

•(n1, n2 + 1)
}

+ {α(n1, n2 + 1) − α(n1, n2)} ,

u∗3(n1, n2) = 1
2

{
v3
l
(n1, n2) + v3

l
(n1, n2 + 1)

}
+ 1

2

{
v3
↔(n1, n2) + v3

↔(n1 + 1, n2)
}
+

1
4

{
v3
•(n1, n2) + v3

•(n1, n2 + 1) + v3
•(n1 + 1, n2) + v3

•(n1 + 1, n2 + 1)
}

+ {α(n1 + 1, n2 + 1) − α(n1, n2)} ,

u∗4(n1, n2) = 1
6

{
v4
l
(n1, n2) + v4

l
(n1, n2 + 1) + v4

l
(n1 − 1, n2) + v4

l
(n1 − 1, n2 + 1) + v4

l
(n1 − 2, n2) + v4

l
(n1 − 2, n2 + 1)

}
+

1
2

{
v4
↔(n1, n2) + v4

↔(n1 − 1, n2)
}

+ 1
4

{
v4
•(n1, n2) + v4

•(n1 − 1, n2) + v4
•(n1, n2 + 1) + v4

•(n1 − 1, n2 + 1)
}
+

{α(n1 + 1, n2 + 1) − α(n1, n2)} ,

s∗ = −α(n1, n2).
(18)

Now we need the following theorem. To find Fenchel-Rockafellar dual of the proposed regularization term:

Theorem 3.1. (Fenchel Duality Theorem)[27]: Assume X,Y are real Banach spaces, f : X →] − ∞,+∞] and
g : Y →] − ∞,+∞] are proper, convex and lower-semicontinuous functions and A : X → Y is a linear continuous
operator, if there exists x0 ∈ X such that f (x0) < ∞ and g is continuous at Ax0, then

max {− f (x) − g(Ax), x ∈ X} = min {g∗(y∗) + f ∗(−A∗y∗), y∗ ∈ Y∗} (19)

4



Theorem 3.2. TVnew (12)is equivalent to the following minimization problem:

TVnew(x) = minvl,v↔,v•,α |vl| + |v↔| + |v•|

s.t. L∗


vl
v↔
v•
α

 =


0
0
0
0
x


(20)

4. Simulation Results

In this section, we evaluate our new proposed regularization method and compare it with the state-of-the-art for
some mathematical image problems-namely denoising and resolution enhancement problems. Interested readers can
get the codes from the following web address:

https://github.com/Alirezahosseini1359/A-New-Total-Variational-Algorithm-for-Image-Processing-
All experiments are performed using Matlab R2014a on a Windows 10 platform with an Intel(R) Core(TM) i5-4200U
CPU 2.30GHz.
Consider the general problem:

min
x∈RN1×N2

F(x) + λTV(x). (21)

Optimization problem (21) is the general mathematical model for most of image problems. For example, for denoising
problem, where y ∈ RN1×N2 is an noisy image F(x) = 1

2 ‖x − y‖2, for deconvolution problem, F(x) = 1
2‖Ax − y‖2, and

for upscaling or resolution enhancement problem, F(x) = I{x|Ax=y} and λ = 1 (Note that in this case, problem (21) is
equivalent to minx∈RN1×N2 {TV(x) : Ax = y}). In the two latest problems, A is some special linear operator. From
theorem 3.1, it is easy to see that problem (21) with TV = TVnew is equivalent to the following problem:

(v∗l, v
∗
↔, v

∗
•, α

∗) ∈ arg min


F(x) + λ{|vl| + |v↔| + |v•|} : L∗


vl
v↔
v•
α

 =


0
0
0
0
x




. (22)

From (17) and (18), we get

L∗ =

(
L∗
l

L∗↔ L∗• D
0 0 0 −1

)
,

therefore, (22) is equivalent to

v∗ = (x∗, v∗l, v
∗
↔, v

∗
•) ∈ arg min

{
F(x) + λ{|vl| + |v↔| + |v•|} : L∗l(vl) + L∗↔(v↔) + L∗•(v•) = Dx

}
. (23)

The dual optimization problem corresponding to problem (23) is as follows:

u∗ = (u∗1, · · · , u
∗
4) ∈ arg min

{
F∗(−D∗(u)) : ‖(Ll(u) L↔(u) L•(u))‖ ≤ λ

}
. (24)

In numerical experiments below, to solve problem (22) and equivalently problem (21) with TV = TVnew, we use the
over relaxed primal-dual algorithm which was proposed by Condat. See Algorithm 1 of [16]. The algorithm generally
can be used to solve the following optimization problem:

argminx∈RN1×N2 ,v∈F {F(x) + G(v) : Cv + Dx = 0}, (25)

where C and D are linear operators. F and G are functions whose corresponding proximal operators have simple
forms or can be calculated easily. In our case

v =

 vl
v↔
v•

 , F =


(R4)N1×N2

(R4)N1×N2

(R4)N1×N2

(R)N1×N2

 , G(v) = λ{|vl| + |v↔| + |v•|}.
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Furthermore, operators D and C can be defined by:

Dx(n1, n2) = Dx(n1, n2), (n1, n2) ∈ X ⇒ Dx ∈ (R4)N1×N2 ,C = (L∗l L∗↔ L∗•).

In the following numerical experiments, to solve problem (21), Algorithm 1 of [16] is applied for Condat’s TV and
Algorithm 3-1 of [25] is used for upwind TV. Moreover, split Bregman algorithm is employed for isotropic TV
(TV), total Laplace model (TL), second order total generalized variation (TGV), total curvature (TC) and infimal-
convolution (INFCON) model. For more details about these regularization functionals and split Bregman algorithm
refer to [24]. Proximal operator associated to function F ∈ Γ0(X) (the set of all convex, proper and l.s.c functions on
X) is the solution of the following problem:

min
y
δF(y) +

1
2
‖y − x‖2.

If y∗ is the solution of this problem, we write proxδF(x) = y∗.
It is not difficult to see that in the following algorithm, proxαG is

(proxαG(v))c(n1, n2) = vc(n1, n2) −
vc(n1, n2)

max(|vc(n1, n2)/(αλ), 1)
, (n1, n2) ∈ X, c ∈ {l,↔, •}.

4.1. Denoising Problem
Assume noisy image is denoted by y. Now, we are going to solve the problem (21) with F(x) = 1

2 ‖x−y‖2 for some
test problems. For any numerical experiment, the noisy image is constructed from the clean image via corrupting
it by additive white Gaussian noise of standard deviation 0.18. 500 iterations of Algorithm 1, for Condat’s TV and
proposed one, Algorithm 3-1 of [25] for upwind TV model and for other variational models split Bregman algorithms
[24] are applied.

4.1.1. Comparison
Now, we consider denoising problem for Cameraman, Lena and Goldhill test images. A part of any image is

applied for experiments (see Table 1).

Cameraman Lena Goldhill

Table 1: Cameraman, Lena and Goldhill test images for denoising problem.

4.2. Resolution enhancement
Resolution enhancement or upscaling problem can be considered as the inverse of downscaling problem. To

downscale an image, usually the image is divided to some square blocks of the equal number of pixels. For any
block, by averaging the intensity values of the pixels which are contained in it and assigning the obtained value to
its intensity, the corresponding downscaled image will be constructed. Now, inversely suppose an N × N image y is
given. The goal is constructing an mN × mN, m > 1 image x such that y is downscale of x. Obviously, there is an
infinite number of such images x. Let A be downscaling operator which maps an image to the image of its averages
over 2×2 blocks (m = 2, that is, if x is an 2N×2N image, then Ax is a downscaled N×N image). We define upscaling
problem by minx∈RN1×N2 F(x) + λTV(x), where λ = 1 and F(x) = I{x : Ax=y}. Because of convexity, this problem has a
unique solution. For the following numerical experiments, any algorithms are applied with 500 iterations.
We solve upscaling problem of four test images: Bike, Einstein, Fruits and Woman (see Table 4).
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Parameters Cameraman Lena Goldhill
Model Parameter 1 (C-L-G) Parameter 2 (C-L-G) PS NR S S IM PS NR S S IM PS NR S S IM

Upwind λ = 0.19, 0.19, 0.16 - 25.5374 0.7981 25.0323 0.6766 25.3598 0.5958
Isotropic λ = 0.15, 0.16, 0.16 - 26.0904 0.7998 25.4277 0.6973 25.7910 0.6266
TC µ1 = 10, 10, 10 µ2 = µ1 26.4009 0.8463 25.7086 0.7069 25.5197 0.6186
TL α = 50, 50, 50 θ = 10, 10, 10 25.1981 0.7217 24.7515 0.6737 25.1173 0.6041
INFCON α = 40, 40, 40 β = 2α 25.9966 0.8122 25.5663 0.7166 25.8533 0.6325
Condat λ = 0.14, 0.15, 0.14 - 26.3477 0.8012 25.5906 0.7057 25.9012 0.6333
TGV λ1 = 0.16, 0.15, 0.16 λ2 = 2λ1 26.0896 0.8181 25.5547 0.7123 25.9012 0.6333
Proposed λ = 0.08, 0.08, 0.08 - 26.6866 0.8350 25.8106 0.7205 26.0667 0.6427

Table 2: Denoising comparison: optimal parameters of different algorithms for different test images are used in comparison.

Reference Noisy TL Isotropic(TV) Upwind

TC INFCON Condat TGV Proposed

Table 3: Performance comparison of different methods for Cameraman denoising problem.

4.2.1. Comparison
In tables 5-6, reference, downscaled and upscaled images obtained by different variational models are illustrated

(the upscaling problems are solved and the part of images corresponding to the red boxes from Table 4 are presented
for comparison). For bike problem, it can be seen that, for the new proposed TV, the thickness of minute hand is
narrower among other total variation models and its shape is closer to the reference image. For Einstein and Woman
upscaling results, the edges of the upscaled images are smoother in the results which are obtained by the new proposed
method (see the eyebrows, eyelids and eyelashes). The reconstruction of the edges in Fruits test problem shows that
the edges are more smoothed in the proposed obtained results. The jagged edges in the downscaled image are notably
smoothed, while in the other total variation models, large jagged edges still remain in the reconstructed images.
Finally, PSNR and SSIM values show that the new method is more accurate in comparison with the state-of-the-art.
Table 7 shows quantitative comparison of the different variational models and different sample images for upscaling
problem.

5. Conclusion

In this paper, a new discrete total variation model was proposed to solve mathemathical image problems. The
Fenchel-dual problem corresponding to the mathematical model of the new TV was constructed. We applied an
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Figure 1: PSNR (left) and SSIM (right) values versus number of iterations for denoising Lena test image and different algorithms.

Figure 2: PSNR (left) and SSIM (right) values versus number of iterations for denoising Goldhill test image and different algorithms (the first 30
iterations are presented).

efficient primal-dual algorithm [16] in our numerical experiments. The results were compared with some other well-
known TVs. The new proposed TV had the best results in reconstructing details of the images, smoothing and
removing noise. Furthermore, for upscaling problem, four images were tested and compared with other TVs. The
jagged parts of the downscaled images can be reconstructed by the proposed TV better than other familiar total varia-
tion models. Moreover, the new proposed TV has better performance in terms of smoothing edges, PSNR and SSIM
values. In future works, we will try to use continuous total generalized variation model to construct the more efficient
discrete model for image processing problems.
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