
A DESCENT APPROACH WITHOUT USING UNKNOWN
PARAMETERS FOR SOLVING NONSMOOTH OPTIMIZATION

PROBLEMS

ALIREZA HOSSEINI1∗

1 School of Mathematics, Statistics and Computer science, University of Tehran, P.O. Box 14115-175,
Tehran, Iran.

hosseini.alireza@ut.ac.ir

Abstract. A neural network model is proposed for solving some class of nonsmooth opti-
mization problems. The model is based on steepest descent approach and it is formulated
by a differential inclusion and is implemented by circuits. Under suitable assumptions, tra-
jectories converge to a point optimal solution set. In this model, there is not any unknown
parameter, which is its major difference in comparision with similar models.

1. Introduction

Neural network models as a parallel approach for solving mathematical problems are
tools for solving real time problems in reasonable time (see [1]-[5] and references therein).
In this paper, we introduce a recurrent neural network for solving a class of nonsmooth
optimization problems, with inequality constraints. Our differential inclusion-based model
does not use any penalty parameter. We prove that solution trajectories globally converge
to an optimal solution of the problem. For differentiable problems, we represent the circuit
diagram of the designed neural network. We solve three numerical examples to confirm
the effectiveness of the theoretical results. The first one is a nonsmooth test problem and
the second one is finding minimum evolution time problem which arises in applications
such as markov decision processes. We solve these problems via penalty-based model, with
different values of penalty parameters and compare our model with this one. Finally, to
illustrate the effectiveness of the new model to solve nonconvex problems, we apply our new
model to solve a a problem whose objective function is nonconvex. Consider the constraint
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optimization problem

min f(x)
s.t gi(x) ≤ 0, i = 1, 2, · · · ,m, (1.1)

where gi : Rn → R for each i = 1, 2, · · · ,m and f : Rn → R are nonsmooth real valued
functions. Furthermore, we assume that problem (1.1) is feasible.

2. Methodology

Consider the following general differential inclusion:

ẋ(t) ∈ F (x(t)),
x(0) = x0,

(2.1)

where F : Rn ⇒ Rn is an upper semicontinuous set valued map, with nonempty compact
and convex values. Furthermore, consider energy function

V (x, y) : Rn × Ω∗ → [0,∞).

Assume the following conditions hold:
Condition 1 : V (x, y) is continuously differentiable with respect to variable x and continu-
ous with respect to variable y.

Condition 2 : If ‖x‖ → ∞, then for each x∗ ∈ Ω∗, V (x, x∗)→∞.

Condition 3 : For each x∗ ∈ Ω∗ and x ∈ Rn, if V (x, x∗) = 0, then x ∈ Ω∗. In addi-
tion, if x = x∗, then, V (x, x∗)=0.

Condition 4 : For any x∗ ∈ Ω∗ and each x ∈ Rn, the following inequality holds:

F T (x)
dV (x, x∗)

dx
≤ 0.

Equality holds only if x ∈ Ω∗.

Condition 5 : There exists x∗∗ ∈ Ω∗, such that for any compact set C ⊂ Rn, that C∩Ω∗ = ∅,
there exixts δc > 0, which satisfies the following inequality:

F T (x)
dV (x, x∗∗)

dx
< −δC .

Theorem 2.1. Suppose Ω∗ is bounded and conditions 1-5 hold. Then for any initial solution
x0 ∈ Rn, solution trajectory path of differential inclusion (2.1) converges to an element of
Ω∗.

Remark 2.2. Note that Ω∗ in Theorem 2.1 can be assumed to be any other compact subset
of Ω. For example, if ∂Ω is bounded, then it is compact, and we can use ∂Ω instead of Ω∗

in the theorem.
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3. The New Model

Now we design a new differential inclusion-based neural network to solve problem (1.1).
Assume that objective functions and constraints are locally Lipschitz. Define the following
activation function:

θ[u] =

 1, u > 0,
[0, 1] , u = 0,
0, u < 0.

(3.1)

Consider the following differential inclusion

ẋ(t) ∈ −

{
m∏
i=1

(1− θ [gi(x(t))])

}
∂f(x(t))− (3.2)

m∑
i=1

θ [gi(x(t))] ∂gi(x(t)).

Remark 3.1. for differentiable functions f and gis, i = 1, 2, · · · ,m, differential inclusion
(3.2), can be implement via circuit form. Figure 1, shows block diagram, corresponding to
recurrent neural network (3.2),

Now, we show that right-hand side of differential inclusion (3.2) is an upper semicontin-
uous set valued map and, consequently, there exists a local solution trajectory for such a
differential inclusion. Assume that the following assumption holds for problem (1.1):
Assumption 1 : f is convex over Ω and can be nonconvex on Rn. Constraint functions gis
are convex and Slater condition holds; interior set of the feasible region is nonempty.

Theorem 3.2. Suppose that f is convex over Ω and gi, i = 1, 2, · · · ,m are convex over
Rn, then any solution trajectory of differential inclusion (3.2) is globally convergent to an
optimal solution of the problem (1.1).
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Figure 1. Block diagram of the recurrent neural network in (3.2). The
step function is −θ(.) (θ is defined in equation (3.1))
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