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ABSTRACT. This paper, presents a spectral method approximating the  boundary optimal control 

problem of the well-known wave equation  with a linear optimal control problem.  The method is 

based upon constructing the Mth degree interpolation polynomials, using Chebyshevs nodes, to 

approximate the wave amplitude. By using the Pontryagin's maximum principle, necessary optimality 

conditions for resulting optimal control problem are derived and the optimal controls in piecewise 

constant form are obtained applying the control parameterization enhancing technique (CPET). 

Efficiency of the proposed method is confirmed by a numerical example. 

 

 

1. INTRODUCTION 

Consider the problem of minimizing the functional 
1 2 1 2

0
( , , ) | ( ) | | ( ) |p pJ t t dt



     
subject to the one-dimensional wave equation 2( , ) ( , ), ( , ) (0, ) (0, )tt zzu z t u z t z t                                     

with the initial conditions, 
1 2( ,0) ( ), ( ,0) ( ), (0, )tu z u z u z u z z    and the boundary 

conditions, 
2 1(0, ) ( ), ( , ) ( ), (0, )u t t u t t t       and the end conditions,

1 2( , ) ( ), ( , ) ( ), (0, )tu z s z u z s z z     where 1   and  2  are measurable control 

functions which are assumed to be constrained as ( ) , 1, 2 , (0, )j j jt j t       ,                                  

for, 0j   and 0j  .  A full discretization method based on appropriate finite differences is 

used to solve a special case of this problem in [3], where the functions s1 and s2 in end 
conditions are zero, the final time   is fix and there is no box constraints on control functions. 
While, the problem considered in this paper is more general than those considered in [3]. 
Optimal control problems for wave equations are summarized in [6]. The spectral methods, as 
an effective tool, have been used to compute control problems for lumped [2] and, in recent 
years, distributed parameter systems [1], [7].  In this paper, we use the spectral method to 
solve the introduced problem in this section. The proposed method is outlined in the next 
section. In section 3, our problem is approximated with the optimal control problems and their 
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optimality conditions are obtained, when p=1,2. Section 4 includes the numerical results 
obtained by the control parameterization enhancing technique. 

 

2. THE PROPOSED METHOD 

    Let ( ), [ 1,1]MT x x    denote the Chebyshev polynomial of degree M,  then the collocation 

points  cos , 0,1, 2, , ,j

j
x j M

M

 
  

 
  are the zeros of 2(1 ) ( ), [ 1,1]Mx T x x   .  The 

Mth degree interpolation polynomials to u(x,t) is given by  

0

( , ) ( ) ( ) ,
M

M

j j

j

u x t a t x


                                             (1) 

where j s are the Lagrange polynomials that ( )j k kjx   [2] . The relationship between 

u
M

(x,t)  and ( , )M

xxu x t  at the Chebyshev nodes , 0,1,2,...,kx k M  is given as

(2)

0

( , ) ( ) ,
M

M

xx k k j j

j

u x t d a t


  where  (2) (2)

k jD d  is the second order Chebyshev derivative 

matrix [10].  In the next section we approximate the constraints of the above mentioned 

problem with a linear control system applying the proposed method. 

3. OPTMAL CONTROL FORMULATION 

In order to use the Chebyshev nodes we introduce the transformation (1 )
2

z x  .  In this 

way the wave equation introduced in section 1  convert to
2( , ) ( , ), ( , ) ( 1,1) (0, )tt xxu x t u x t x t      with the initial conditions,

1 2( ,0) ( ), ( ,0) ( ), ( 1,1),tu x u x u x u x x       and the boundary conditions,

2 1( 1, ) ( ), (1, ) ( ), (0, ),u t t u t t t       and the end conditions,

1 2( , ) ( ), ( , ) ( ), ( 1,1),tu x s x u x s x x       where
2

  . Considering the function u in 

the form of  (1) we get a linear second order controlled system as 

( ) ( ) ( ) ,a t Ca t Bv t   (0) , (0) ,i ia a a a   ( ) , ( ) ,f fa a a a            (2) 

where, 

 

(2) (2)

11 1 1

2

(2) (2)

11 1 1

,

M

M M M

d d

C

d d





  

 
 

  
 
 

 

(2) (2)

10 1

2

(2) (2)

10 1

,

M

M M M

d d

B

d d



 

 
 

  
 
 

a(t)=(a1(t),…,aM-1(t))
T
, V(t)=(v1(t) ,v2(t))

T
, 

ai = (u1(x1),…, u1(xM-1))
T
, 

ia = (u2(x1),…, u2(xM-1))
T
,  af = (s1(x1),…, s1(xM-1))

T
 and 

fa = 

(s2(x1),…, s2(xM-1))
T
. Introducing  a new variable ( ) ( ) ,b t a t  the control system (2)  can be 

written as a following first order linear controlled system  

( ) ( ) ( ),Y t EY t FV t    (0) , ( )
i f

i f

a a
Y Y

a a


    
    
   

,                                (3) 

where, 
( )

( )
( )

b t
Y t

a t

 
  
 

,  
0

0

C
E

I

 
  
 

  and 
0

B
F

 
  
 

. 
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 3.1 Minimum energy problem.    As a minimum energy problem (MEP), we first consider 

the objective functional 2 2

1 2 1 2
0

( , , ) ( ) ( )J t t dt


      . According to Pontryagin's Maximum 

Principle [4], the necessary optimality conditions for optimal controls  * * *

1 2( ) ( ( ), ( ))TV t v t v t  

and the optimal time *  minimizing  the functional  J subject to constraints (3) is  
* *1

12
( ) max{ ,min{ , ( ) }},j j j jv t t B     * * * * * * * * * *

1 2 1 2( ( ), ( ), ( ), ( ), ( ), ( )) 0,H a b               (4) 

where , 1,2jB j   is the jth column of B, H  is the Hamiltonian defined as

2 2

1 2 1 2 1 2 1 2( , , , , , ) ( ) ,H a b Ca BV b             *

1  and *

2  are the costate variables which 

satisfy  

1 2 ,
H

b
 


   


 

2 1

H
C

a
 


   


,                                         (5) 

and  *( )b t  and  *( )a t  are solution of (3) corresponding to  *( )V t .   

3.2 Minimum fuel problem. Now, we consider the minimum fuel problem (MFP) by setting

1 2 1 2
0

( , , ) | ( ) | | ( ) |J t t dt


      . The Pontryagin's Maximum Principle gives the following 

necessary condition for optimal controls and time 

*

1

* *

1

*

1

( ) 1,

( ) 0 1 ( ) 1,

( ) 1,

j j

j j

j j

t B

t t B

t B

 

 

 

  


   
 

 * * * * * * * * * *

1 2 1 2( ( ), ( ), ( ), ( ), ( ), ( )) 0,H a b               (6) 

where, 
1 2 1 2 1 2 1 2( , , , , , ) | | | | ( )H a b Ca BV b            , *

1  and *

2  are the costate variables 

satisfying at   (5) and  *( )b t  and  *( )a t  are solution of (3) corresponding to  *( )V t .  It can be 

proved that if the matrices 1[ | | | ]M

j j jB CB C B , j=1, 2 are nonsingular, then there is no 

singular intervals and the optimal controls are completely determined by (6) (See [4] for more 

details). We point out that the optimality system for both the MEP and  the MFP  consists of 

the state system (3)  with the boundary conditions,  the  costate system (5), together with the 

expressions (4) and (6) for the control functions and optimal  time.  Due to difficulties in 

solving the optimality systems for MEP and MFP, in the next section we, directly use the 

control parameterization enhancing technique (CPET) introduced in [5] to optimize the 

functional 
1 2( , , )J     subject to the linear control system (3). 

  

4. NUMERICAL RESULTS 

   As a numerical example, we consider a problem with 100 , 1  ,  

2

1 2

4
( )

2
u z z

 
  

 
, 

2 ( ) 0u z  ,  
1

2
( ) sin

z
s z

 
  

 
, 2 ( ) 0s z  , j=-1, j =1,  j=1,2. In our implementation we set 

M=10. Figures 1 and 2, respectively, show the optimal boundaries * , 1,2j j   and   the 

corresponding optimal state ( , )Mu x t  for MEP obtained by CPET.  The optimal value for 

objective functional (6) obtained by CPET is * * *

1 2( , , )  23.3801J      which is corresponding to 



 
 H. ZAREI  ET AL. 2 

 
 

* 147.1297  .  The optimal controls obtained by CPET for MFP and the corresponding 

optimal state ( , )Mu x t  are depicted in Figures 3 and 4, respectively.  Moreover, the 

corresponding objective functional value is * * *

1 2( , , ) 58.1754J      which is corresponding to 

* 50.8477  .    
I 

 

Figure 1.  Control functions  v1(- - -) and v2(–) for MEP obtained by CPET1      Figure 2.  uM(x,t) for MEP obtained by CPET1

 

 

Figure 3.  Control functions  v1(---) and v2(–)  for MFP obtained by CPET2                     Figure  4.  uM(x,t) for MFP obtained by CPET2.  
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