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Abstract. In order to say whether two shapes are similar, we compare them as metric
spaces. From the point of view of metric geometry, two metric spaces are equivalent if their
corresponding metric structures are symmetric. Based on types of distances, symmetry
can be classified into extrinsic and intrinsic. While extrinsic symmetry detection finds
rigid transformations that are Euclidean distance preserving, intrinsic symmetry detection
of 3D shapes, using geodesic distances has received considerable attentions, as a problem
in recent years. Among the several challenging soloutions , there is an approach to find the
minimum distortion embedding of the shape into a finite dimentional Euclidean space and
the analysis of the intrinsic symmetry group of the shape can be reduced to the analysis of
some extrinsic symmetry group. In this paper, we review this problem and its soloution,
by proposing a nonlinear optimization problem as an efficient approach in this way.

1. Introduction

Symmetries are universal phenomena, in both natural and manmade shapes, which re-
flect high-level information about shape structure. Many applications in geometric model-
ing and processing utilize the symmetry information. The characterization and detection
of symmetries of 3D shapes, thus receives significant attention in computational geome-
try and computer graphics. Generally speaking, approaches for shape similarity through
the metric geometry framework model the shapes as metric spaces equipped with some
metric and so, the symmetry of a shape can be regarded as a distance preserving self-
homeomorphism. Based on types of distances, symmetry can be classified into extrinsic
and intrinsic. While extrinsic symmetry detection finds rigid transformations that are Eu-
clidean distance preserving, intrinsic symmetry detection uses geodesic distances and looks
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for isometric deformations. The simplest choice is the Euclidean metric arising from the
space R3 in which the shape X is embedded, which is invariant to Euclidean isometries (the
elements of the isometry group Iso(R3,dR3) are rigid motions including rotations, transla-
tions and reflections). The metric space (X, dR3) is a subset of the metric space (R3, dR3).
Given two shapes (X, dR3) and (Y, dR3) and regarding them as subsets of (R3, dR3), their
similarity can be quantified using the Hausdorff distance

dH(X,Y ) = max{sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)}

which expresses the similarity between two subsets of a metric space with metric d. Since
the shapes are defined up to Euclidean isometry, one minimizes dH over all the possible
rigid motions,

min
i∈Iso(R3,dR3)

dH(i(X), Y ),

parametrized by a small number of degrees of freedom (three rotation angles and three
translation coordinates). This optimization problem can be regarded as best possible rigid
alignment of X and Y in R3, and is solved efficiently using iterative closest point (ICP)
algorithms (provided that good initialization parameters are known). In a more general
setting, we are given two shapes (X, dX) and (Y, dY ) with some generic metrics dX , dY
(e.g. the geodesic or diffusion metrics invariant to isometric deformations of the shapes)
that do not arise from a common metric space. In this case, one can either try to compare
the metric directly or alternatively, reduce the problem to the aforementioned setting. For
this purpose, one tries to represent the metric dX (respectively, dY ) in some fixed metric
space (Z, dZ) by means of an isometric embedding f : X → Z (respectively, g : Y → Z)
satisfying dX = dZ ◦ (f × f) (respectively, dY = dZ ◦ (g× g)). The images f(X) and g(Y ),
referred to as canonical forms by Elad and Kimmel [EK03], can be compared as subsets of
(Z, dZ) using the Hausdorff distance under the isometries in (Z, dZ),

min
i∈Iso(Z,dZ)

dH(i(f(X)), g(Y )).

The choice of the embedding space (Z, dZ) should be such that its isometries can be easily
parametrized and searched over. In particular, when Z = R3, the comparison of canonical
forms boils down to the rigid alignment problem. Unfortunately, isometric embeddings of
general metrics into a Euclidean space typically do not exist. It is however possible to find
the best possible approximate isometry, by minimizing some error criterion Bi

mini∈Iso(Z,dZ) ∥ dX − dZ ◦ (f × f) ∥ . (1.1)

Elad and Kimmel [?] used the L2 (least-squares) error, finding the approximately isometric
embedding by solving the multi-dimensional scaling (MDS) problem [?]. We review problem
as an application of nonlinear optimization theory in computer graphic and other similar
filds.
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2. Sketch of the problem

Triangulation. Given surfaces in 3D, we would like to measure their isometric dissimilar-
ity and thereby classify them. At the first step, we compute the geodesic distance matrix
for each surface on triangulated domains. A triangulated surface is an approximate rep-
resentation of a continuous one. The representation error introduced by triangulating a
smooth surface is of an order of the length of the edges of the triangles. The smaller the
triangles get, the more accurate the triangulation represents the surface. In order to com-
pute the geodesic distances between pairs of points on the surface, we use a method, the fast
marching on triangulated domains .The basic idea is an efficient numerical approach that
solves an Eikonal equation on the triangulated surface. The solution is a surface distance
function that is proven to converge to the viscosity smooth solution as the numerical grid
(triangulation) is refined. Like the Dijkstra graph search method, the distance function is
constructed by starting from a sources point and propagating outwards. The fast marching
on triangulated domains method can compute the geodesic distance between one vertex
and the rest of the n̂ surface vertices in O(n̂) operations. Repeating this computation
for n(n < n̂) selected vertices, we can compute a geodesic distance matrix D in O(nn̂)
operations.Eachij entry of D represents the square geodesic distance between vertex vi
and vertex vj. That is

δij = dS(vi, vj), Dij = (δij)
2.

where dS(vi, vj) is the geodesic distance (measured on the surface S) between the surface
point indicated by the vertex vi, and the surface point indicated by the vertex vj.

Multi-Dimensional Scaling Method. Multi-Dimensional Scaling (MDS) is a family
of methods that map measurements of similarity or dissimilarity among pairs of feature
items into distances between feature points with given coordinates in a small-dimensional
Euclidean space. The graphical display of the (di)similarity measurements provided by an
MDS procedure enables us to view the data and explore its geometric structure. Most
metrical MDS methods expect a set of n items and their pairwise (dis)similarities and the
desired dimensionality, m, of the Euclidean embedding space.

Definition 2.1. [?] MDS algorithms map each item to a point xi = Xi in anm−dimensional
Euclidean space Rm by minimization of the function S(X) as follows:

S(X) =

∑
i<j ωij(δij − dij(X))2∑

i<j(δij)
2

(2.1)

where δij is the input dissimilarity measure between item i and j, dij(X) is the Euclidean
distance between these items in the m−dimensional Euclidean space, and ωij are some
weighting coefficients. the function S(X) is called the stress function.

The bending invariant representation is constructed by first measuring the intergeodesic
distances between uniformly distributed points on the surface. Next, a type of multidimen-
sional scaling (Least Squares MDS) technique is applied to extract coordinates in a finite
dimensional Euclidean space in which geodesic distances are replaced by Euclidean ones.
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Applying this transform to various surfaces with similar geodesic structures (first funda-
mental form) maps them into similar signature surfaces. We thereby translate the problem
of matching nonrigid objects in various postures into a simpler problem of matching rigid
objects as the final result. As mentioned in ?? and ?? , to detect the intrinsic symmetries,
we must minimize the stress function. the following theorem provid this opportunity:

Theorem 2.2. Bo, El Minimizing the stress function ?? is equivalent to minimizing the
following functional:

S(X) =
∑
i<j

ωij(δij − dij)
2

where

dij(X) = (
n∑

a=1

(xia − xja)
2)

1

2

and the following is the final coordinates:

Xi = n−1B(Z)Z

where the matrix B(Z) elements are

bij(Z) =
−δij

dij(Z)

for i ̸= j and otherwise is 0 and also

bii(Z) =
n∑

j=1,j

bij.
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