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Abstract. In this paper, we study a nonlinear Langevin equation involving two fractional
orders α ∈ (1, 2], β ∈ (1, 2] with intial conditions. By means of an interesting coupled
fixed point theorem, we establish sufficient conditions for the existence and uniquensess of
solutions for some fractional equations with different boundary conditions

1. Introduction

In this paper, we study the existence and uniqueness of solutions for the following bound-
ary value problem of Langevin equation with two different fractional orders:{

Dβ(Dα + λ)x(t) = f(t, x(t)), 0 ≤ t ≤ 1, 1 < α ≤ 2, 1 < β ≤ 2,

x(0) = 0, x′(0) = 1, x(1) =
∫ η

0
x(τ)dτ for some 0 < η < 1,D2αx(1) + λDαx(1) = 0,

(1.1)
where Dα is the Caputo fractional derivative of order α, f : [0, 1]× → is a given continuous
function and λ is a real number. Furthermore, D2α is the sequential fractional derivative
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presented by Miller and Ross [1]{
Dαu = Dαu,

Dkαu = DαD(k−1)αu, k = 2, 3, · · · .

1.1. Preliminaries.

Definition 1.1. The Riemann-Liouville fractional integral of order α ∈+ for a continuous
function x : [0,∞) → is defined as

Iαx(t) =

∫ t

0

(t− s)α−1

Γ(α)
x(s)ds, 0 ≤ t ≤ 1, (1.2)

where Γ(.) is the Gamma function, provided that the right-hand-side integral exists and be
finite.

Definition 1.2. For a continuous function x : [0,∞) →, the Caputo derivative of fractional
order α ∈+ is defined as

Dαx(t) =
1

Γ(n− α)

∫ t

0

(t− s)n−α−1x(n)(s)ds, 0 ≤ t ≤ 1, (1.3)

where n− 1 < α < n, provided that the right-hand-side integral exists and be finite.

Lemma 1.3. Let α, β ≥ 0. If x is continuous, then IαIβx = IβIαx = Iα+βx.

Lemma 1.4. Let α ≥ 0. If x is continuous, then DαIαx = x.

Lemma 1.5. Let n ∈ N+, α ∈ (n − 1, n). Then, the general solution of the fractional
differential equation Dαx = 0 is given by

x(t) = c0 + c1t+ c2t
2 + · · ·+ cn−1t

n−1,

where ci ∈, i = 1, 2, · · · , n.

Theorem 1.6. Let (X,≼) be a partially ordered set and suppose that there exists a metric
d in X such that (X, d) is a complete metric space. Let f : X × X → X be a mapping
having the mixed monotone property on X. Assume thatthere exists a k ∈ [0, 1] with
d(f(x, y), f(u, v)) ≤ k

2
[d(x, u) + d(y, v)],

for each x ⪰ u, y ⪯ v. Suppose either f is continuous or X has the following property:
(i) if a non-decreasing sequece {xn},then xn ⪯ x for all n,
(ii) if a non-increasing sequece {yn},then y ⪯ yn for all n.
If there exist x0, y0 ∈ X such that x0 ⪯ f(x0, y0) and y0 ⪰ f(y0, x0), than f has a coupled
fixed point (x∗, y∗) ∈ X.
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2. Existence and uniqueness results

Lemma 2.1. x is a solution of the problem (1.1) if and only if it is a solution of the
nonlinear integral equation

x(t) =
1

Γ(α + β)

∫ t

0

(t− τ)α+β−1f(τ, x(τ))dτ − λ

Γ(α)

∫ t

0

(t− τ)α−1x(τ)dτ

+ tα
[ ∫ η

0

x(τ)dτ − 1 +
Γ(2− α)

Γ(α + 2)Γ(β − α)

∫ 1

0

(1− τ)β−α−1f(τ, x(τ))dτ

+
Γ(1− α)

Γ(α + 2)
+

λ

Γ(α)

∫ η

0

(1− τ)α−1x(τ)dτ

− 1

Γ(α + β)

∫ 1

0

(1− τ)α+β−1f(τ, x(τ))dτ
]

− tα+1

Γ(α + 2)

[Γ(2− α)

Γ(β − α)

∫ 1

0

(1− τ)β−α−1f(τ, x(τ))dτ +
Γ(2− α)

Γ(1− α)

]
+ t.

(2.1)

Proof. Let x(t) be a solution of the problem 1.1. Then from Lemma 1.4, we obtain

Dβ[Dα + λx(t)− Iβf(., x(.)x(t))] = 0.

Now by applying Lemma 1.5, we deduce

(Dα + λ)x(t)− Iβf(., x(.))(t) = c0 + c1t,

or equivalently,

Dα
(
x(t) + λIαx(.)(t)− Iα+βf(., x(.))(t)− c0

tα

Γ(α + 1)
− c1

tα+1

Γ(α + 2)

)
= 0.

Applying Lemma 1.5 again, the general form of the problem (1.1) can be written as

x(t) = Iα+βf(., x(.))(t)− λIαx(.)(t) + c3 + c0
tα

Γ(α + 1)
+ c1

tα+1

Γ(α + 2)
. (2.2)

By using the boundary conditions for the problem (1.1), we have

c0 = Γ(α + 1)

∫ η

0

x(τ)dτ − Γ(α + 1) +
Γ(α + 1)

Γ(β − α)

[Γ(2− α)

Γ(β − α)

.

∫ 1

0

(1− τ)β−α−1f(τ, x(τ))dτ + Γ(1− α)
]
+

λΓ(α + 1)

Γ(α)

∫ η

0

(1− τ)α−1x(τ)dτ

− Γ(α + 1)

Γ(α + β)

∫ 1

0

(1− τ)α+β−1f(τ, x(τ))dτ,

c1 = −Γ(2− α)

Γ(β − α)

∫ 1

0

(1− τ)β−α−1f(τ, x(τ))dτ,

c2 = 0, c3 = 1.

(2.3)
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Substituting the values of c0, c1, c2 and c3 in (2.2), we obtain the solution (2.1). On the
other hand, it is easy to prove that, if x(t) is a solution of the integral equation (2.1), then
x(t) is also a solution of the problem (1.1). □

3. Investigation in the cases λ ≥ 0, λ < 0

To prove the main results, we need the following assumptions:
(H1) f : [0, 1]× → be a function such that f(., x(.)) ∈ C([0, 1], ) for each x ∈ C([0, 1], ).
(H2) There exists L > 0 such that 0 ≤ f(t, x)−f(t, y) ≤ L.(x−y) for all x, y ∈ with x ≥ y.
Theorem 3.1. With the assumptions (H1)− (H2), if the the problem (1.1) has a coupled
lower and upper solution and λ ≥ 0,Λ = max{Λ1,Λ2} < 1, where

Λ1 =
L

Γ(α + β + 1)
+

2|λ|
Γ(α + 1)

+
1 + Γ(2− α)

Γ(α + 2)
.

L

Γ(β − α− 1)
,

Λ2 =
|λ|

Γ(α + 1)
+

L

Γ(α + β + 1)
+

Γ(2− α)

Γ(α + 2)
.

L

Γ(β − α− 1)
.

(3.1)

then it has a unique solution in C[0,1].
Theorem 3.2. With the assumptions (H1)− (H2), if the the problem (1.1) has a coupled
lower and upper solution and λ < 0,Λ < 1, where

Λ1 =
2.L

Γ(α + β + 1)
+

2|λ|
Γ(α + 1)

+
Γ(2− α)

Γ(2 + α)

2L

Γ(β − α + 1)
,

Λ2 =
|λ|

Γ(α + 1)
+

L

Γ(α + β + 1)
+

Γ(2− α)

Γ(2 + α)

2L

Γ(β − α + 1)
.

then it has a unique solution in C([0, 1],R).
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